cs61C | lecture4

news2025/2/22 4:15:09

cs61C | lecture4

C 语言内存布局

### Stack 在最顶部,向下增长。包含局部变量和 function frame information。 > Each stack frame is a contiguous block of memory holding the local variables of a single procedure. > A stack frame includes: > - Location of caller function > - Function arguments > - Space for local variables 栈指针(SP, Stack Pointer) 告诉我们最低(当前)stack frame 在哪里。当进程结束时,SP 会移动回之前的位置,但是数据会保留(现在变成 garbage)。 ```c int main() { a(0); return 1; } void a(int m){ b(1); } void b(int n){ c(2); d(4); } void c(int o){ printf("c"); } void d(int p){ printf("d"); } ``` ![](https://img-blog.csdnimg.cn/img_convert/e5d9b745f8cc324b8aee3336069708c9.png) ![](https://img-blog.csdnimg.cn/img_convert/10f3e24bcc4c8380c5a6da1a90c3e6b4.png) 以下错误代码: ```c int *getPtr(){ int y; y = 3; return &y; } int main(){ int *stackAddr, content; stackAddr = getPtr(); content = *stackAddr; printf("%d", content); /* 3 */ content = *stackAddr; printf("%d", content); /* ? */ } ``` 第一次调用完 getPtr(),getPtr 的栈帧被收回,y 也相应地消失,stackAddr 指向 y 的地址,调用 printf,printf 函数覆盖了原先的栈帧位置,所以再次解引用 stackAddr,不能知道值为多少。 $\textcolor{red}{不要返回指向局部变量的指针!}$ ### Heap 向上增长,可以通过 malloc,realloc 和 calloc 请求空间。可以动态调整大小。 ### Static Data 存储全局和静态变量,这部分不会变化,在整个程序生命周期都一样。 字符串 char* str = "hi" 保存在该区域,**但是字符串数组 char str\[] = "hi" 是保存在栈区!** ### Code 这是程序加载到的位置,也是程序启动的地方。

在函数外定义的变量存储在 Static Data
在函数内部声明的变量存储在 Stack,在函数返回时释放
动态分配的内存存储在 Heap

#include <stdio.h>

int varGlobal; 

int main() {
	int varLocal;
	int *varDyn = malloc(sizeof(int));
}
## Big Endian && Little Endian [字节序 Wiki](https://zh.wikipedia.org/wiki/%E5%AD%97%E8%8A%82%E5%BA%8F) ### Big Endian 大端序:最高位字节存储在最低的内存地址处。 ### Little Endian 最低位字节存储在最低的内存地址处。 ### 常见误区 1.字节序仅适用于那些占有多个字节的值,对于 char c = 97,c == 0b01100001 在大端序和小端序中存储是一样的。 2.寄存器没有任何字节顺序的概念 3.数组和指针的顺序依旧一样。 - int a\[5] = {1, 2, 3, 4, 5} 假设地址为 0x40 - &(a\[0]) == 0x40 && a\[0] == 1 ## 动态内存分配 ### malloc 接受一个参数也就是连续内存块的字节大小,但是它是未初始化的,返回一个指向分配开始的指针。如果分配失败了返回 NULL。 malloc 一般返回 void \*,所以我们要进行类型转换。 ```c int *p = (int *) malloc(n * sizeof(int)); ``` ### free 释放内存,需要传入一个指向分配的块头部的指针。 ### calloc 用于 heap allocation。 他可以将数组中的每个单个条目初始化为 0。 ```c /* void *calloc(size_t nmemb, size_t size); */

int *p = (int *)calloc(5, sizeof(int));

### 常见的内存错误
[What does the "bus error" message mean, and how does it differ from a segmentation fault?](https://stackoverflow.com/questions/212466/what-is-a-bus-error-is-it-different-from-a-segmentation-fault)
#### Segmentation Fault
尝试访问不允许的内存,比如内存访问越界、非法指针使用等。
#### Bus Error
当处理器无法尝试请求的内存访问,例如使用地址不满足对齐要求的处理器指令。
#### 使用未初始化的值
```c
void foo(int *p) {
	int j; /* 未初始化,是 garbage */
	*p = j; 
}

void bar() {
	int i = 10;
	foo(&i);
	printf("i = %d\n", i); /* i 现在包含 garbage */
}
使用不知道的内存
Using Memory You Don’t Own(1)

如果 head 为 NULL,则会引发 Seg Fault

typedef struct node {
	struct node* next;
	int val;
}Node;

int findLastNodeValue(Node* head) {
	/* head 可能为 NULL */
	while(head->next != NULL) {
		head = head->next;
	}
	return ...
}
Using Memory You Don’t Own(2)

以下代码的问题在于该函数返回指向 result 的指针,而 result 是局部变量,在栈区创立,函数返回后该内存空间会被释放。这个指针也就指向了未知的东西。

解决方法:使用动态内存分配,用 malloc 在堆上分配内存,这样即便函数返回,内存也仍然有效。

char *append(const char* s1, const char* s2) { 
	const int MAXSIZE = 128; 
	char* result = (char*)malloc(MAXSIZE * sizeof(char)); // 动态分配内存 
	if (result == NULL) { 
		return NULL; // 检查内存分配是否成功 
	}
	...
Using Memory You Don’t Own(3)

strlen() 函数不会算上结尾的 ‘0’。

同时也要避免双重释放,比如

free(person);
free(person->name);
Using Memory You Haven’t Allocated


实际上这被称为 BUFFER OVERRUN or BUFFER OVERFLOW
安全的版本:

#define ARR_LEN 1024
char buffer[ARR_LEN];

int foo(char *str) {
	strncpy(buffer, str, ARR_LEN);
}
Memory Leaks


pi 是全局变量,所以 foo() 中的 pi 覆盖了 main 函数中,main() 函数内的指针就无法被释放。

创建 Linked List

struct Node {
	char *value; /* 字符串 */
	struct Node *next; /* 指向下一个节点的指针 */
} node;

Adding a Node to the List

s1 -> s2 -> s3 -> NULL

char *s1 = "start", *s2 = "middle", *s3 = "end";
struct node *theList = NULL;
theList = addNode(s3, theList);
theList = addNode(s2, theList);
theList = addNode(s1, theList);

这些字符串实际上存储在静态区。

node *addNode(char *s, node *list) {
	node *new = (node *) malloc(sizeof(NodeStuct));
	new->value = (char *) malloc(strlen(s) + 1); /* '\0' 的存在 */
	strcpy(new->value, s);
	new->next = list;
	return new;
}

Removing a Node from the List

Delete/free the first node
node *deleteNode(node *list) {
	node *temp = list->next;
	free(list->value);
	free(list);
	return temp;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1824558.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leaflet集成wheelnav在WebGIS中的应用

目录 前言 一、两种错误的实现方式 1、组件不展示 2、意外中的空白 二、不同样式的集成 1、在leaflet中集成wheelnav 2、给marker绑定默认组件 2、面对象绑定组件 3、如何自定义样式 三、总结 前言 在之前的博客中&#xff0c;我们曾经介绍了使用wheelnav.js构建酷炫…

简易开发一个app

即时设计网站 即时设计 - 可实时协作的专业 UI 设计工具 需要先设计好UI界面 上传到codefun 首次需要安装 自动生成代码 打开hb软件 新建项目 打开创建的项目 删除代码 复制代码过去 下载图片 将图片放到文件夹里 改为这种格式 index.vue 如果不需要uni-app导航栏可以修改 …

Vue43-单文件组件

一、脚手架的作用 单文件组件&#xff1a;xxx.vue&#xff0c;浏览器不能直接运行&#xff01;&#xff01;&#xff01; 脚手架去调用webpack等第三方工具。 二、vue文件的命名规则 建议用下面的两种方式。&#xff08;首字母大写&#xff01;&#xff01;&#xff01;&#x…

云原生系列之Docker常用命令

&#x1f339;作者主页&#xff1a;青花锁 &#x1f339;简介&#xff1a;Java领域优质创作者&#x1f3c6;、Java微服务架构公号作者&#x1f604; &#x1f339;简历模板、学习资料、面试题库、技术互助 &#x1f339;文末获取联系方式 &#x1f4dd; 系列文章目录 云原生之…

大模型算法备案全网最详细说明(附附件)

本文要点&#xff1a;大模型备案最详细说明&#xff0c;大模型备案条件有哪些&#xff0c;《算法安全自评估报告》模板&#xff0c;大模型算法备案&#xff0c;大模型上线备案&#xff0c;生成式人工智能(大语言模型)安全评估要点&#xff0c;网信办大模型备案。 共分为以下几…

逻辑这回事(五)---- 资源优化

基础篇 Memory 避免细碎的RAM。将大的RAM拆分成多个小RAM&#xff0c;并根据地址关断可以优化功耗&#xff0c;但把多个小RAM合成大RAM可以优化面积。Block RAM和分布式RAM合理选择。根据存储容量&#xff0c;对Block RAM和分布式RAM的实现面积和功耗进行评估&#xff0c;选择…

「网络原理」IP 协议

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;计网 &#x1f387;欢迎点赞收藏加关注哦&#xff01; IP 协议 &#x1f349;报头结构&#x1f349;地址管理&#x1f34c;动态分配 IP 地址&#x1f34c;NAT 机制&#xff08;网络地址映射&am…

【计算机毕业设计】242基于微信小程序的外卖点餐系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

SX2106B 2A同步降压型DC/DC转换器芯片IC

一般描述 SX2106B是一款同步降压DC/DC转换器&#xff0c;提供宽广的4.5V至24V输入电压范围和2A连续负载电流能力。 SX2106B故障保护包括逐周期电流限制、UVLO、输出过电压保护和热关机。可调软启动功能&#xff0c;防止启动时的浪涌电流。该器件采用电流模式控…

四轴飞行器、无人机(STM32、NRF24L01)

一、简介 此电路由STM32为主控芯片&#xff0c;NRF24L01、MPU6050为辅,当接受到信号时&#xff0c;处理对应的指令。 二、实物图 三、部分代码 void FlightPidControl(float dt) { volatile static uint8_t statusWAITING_1; switch(status) { case WAITING_1: //等待解锁 if…

Syncovery:跨平台高效文件备份与同步的得力助手

在数字化时代&#xff0c;数据安全与文件同步已成为个人及企业不可或缺的需求。Syncovery作为一款专为Mac和Windows用户设计的文件备份和同步工具&#xff0c;凭借其高效、安全和易用的特点&#xff0c;赢得了广泛赞誉。 一、强大备份功能 Syncovery支持多种备份方案和数据格…

基于BERT微调+模板填充快速实现文本转DSL查询语句

前言 Text2SQL是指将自然语言转化为类SQL查询语句&#xff0c;使得用户的查询文本可以直接实现和数据库交互&#xff0c;本文介绍一种以BERT为基础模型&#xff0c;通过模板填充来实现的Text2SQL算法和产品化。 内容摘要 Text2SQL任务说明模板填充的思路条件列选择子模型搭建…

SOFTS: 时间序列预测的最新模型以及Python使用示例

近年来&#xff0c;深度学习一直在时间序列预测中追赶着提升树模型&#xff0c;其中新的架构已经逐渐为最先进的性能设定了新的标准。 这一切都始于2020年的N-BEATS&#xff0c;然后是2022年的NHITS。2023年&#xff0c;PatchTST和TSMixer被提出&#xff0c;最近的iTransforme…

【编程技巧】降低程序复杂度:控制逻辑与业务逻辑分离

为什么要降低代码复杂度 好的项目都是迭代出来的&#xff0c;所以代码肯定是会被人维护的 降低代码复杂度就是为了降低下一个维护人的维护成本&#xff0c;更简单地理解跟修改代码 代码组成 代码逻辑 控制逻辑 业务逻辑 控制逻辑 控制业务逻辑的代码 例如&#xff1a;加缓存…

计算机网络(7) 错误检测

一.校验和 使用补码计算校验和是一种常见的错误检测方法&#xff0c;应用于网络协议如IP和TCP。补码是二进制数的一种表示方法&#xff0c;可以有效地处理符号位和进位。下面是如何利用补码计算校验和的详细步骤和算数例子。 ### 计算步骤 1. **将数据分块**&#xff1a;将数…

七个备受欢迎的IntelliJ IDEA实用插件

有了Lombok插件&#xff0c;IntelliJ就能完全理解Lombok注解&#xff0c;使它们能如预期般工作&#xff0c;防止出现错误&#xff0c;并改善IDE的自动完成功能。 作为IntelliJ IDEA的常用用户&#xff0c;会非常喜欢使用它&#xff0c;但我们必须承认&#xff0c;有时这个IDE&…

Linux---系统的初步学习【 项目二 管理Linux文件和目录】

项目二 管理Linux文件和目录 2.1项目知识准备 ​ 文件是存储在计算机上的数据集合。在Windows系统中&#xff0c;我们理解的文件可以是文本文档、图片、程序、音乐、视频等。在Linux中&#xff0c;一切皆文件&#xff0c;也就是除了Windows中所理解的文件&#xff0c;目录、字…

AI模型部署:Triton Inference Server部署ChatGLM3-6B实践

前言 内容摘要 本篇先将搭建基础Triton设置模块&#xff0c;将ChatGLM3-6B部署为服务跑通&#xff0c;再加入动态批处理和模型预热来提升服务的性能和效率&#xff0c;包括以下几个模块 Docker镜像环境准备模型基础配置config.pbtxt自定义Python后端model.py模型服务加载卸载…

人工智能历史与现状

1 人工智能历史与现状 1.1 人工智能的概念和起源 1.1.1 人工智能的概念 人工智能 (Artificial Intelligence ,AI)是一门研究如何使计算机 能够模拟人类智能行为的科学和技术,目标在于开发能够感知、理解、 学习、推理、决策和解决问题的智能机器。人工智能的概念主要包含 以…

Stable Diffusion本地化部署详细攻略

一、硬件要求 内存&#xff1a;至少16GB 硬盘&#xff1a;至少60GB以上的磁盘空间&#xff0c;推荐SSD固态硬盘 显卡&#xff1a;推荐NVIDIA显卡 显存&#xff1a;至少4GB Stabl Diffusion因为是在本地部署&#xff0c;对显卡的要求比较高&#xff0c;如果经济能力可以的话…