AI绘画入门教程(非常详细)从零基础入门到精通Midjourney提示词,咒语

news2025/2/25 1:34:53

Microorganisms infiltrating through brain-machine interfaces --v 6.0

Microorganisms infiltrating through brain-machine interfaces ,redpupil --v 6.0

Microorganisms infiltrating through brain-machine interfaces,billion girls dream --v 6.0

--niji 6

“动漫风”模型,可以生成高质量的二次元图像以及插画。

--sref URL

风格一致性,URL 是风格参考图片的网址,通过提供图像URL来指定理想的视觉风格。

下面是示例:图1 作为垫图,另外 选择一张作为视觉风格参考(图2),生成了一组图3

图1

图2

--cref URL

角色一致性功能,URL 是角色参考图片的网址。Midjourney会分析参考图片的角色特征,在生成新图片时尽可能保持一致。

下面是示例:图1 作为角色参考图,生成了一组图2,很像了。

图1

图2

局部修图

案例:比如下图生成的图片里有文字,需要去掉,而出现的原因是我垫的那张图也有文字

操作:点击vary(region),进入局部修图,方法删除垫图的链接,涂抹有文字的区域,重新生图

 Stable Diffusion 基础操作

文生图

如图所示 Stable Diffusion WebUl 的操作界面主要分为: 模型区域、功能区域、参数区域出图区域

txt2img 为文生图功能,重点参数介绍:

正向提示词: 描述图片中希望出现的内容

反向提示词: 描述图片中不希望出现的内容

Sampling method: 采样方法,推荐选择 Euler a 或 DPM++ 系列,采样速度快

Sampling steps: 迭代步数,数值越大图像质量越好,生成时间也越长,一般控制在 30-50就能出效果

Restore faces: 可以优化脸部生成

Width/Height: 生成图片的宽高,越大越消耗显存,生成时间也越长,一般方图 512x512竖图 512x768,需要更大尺寸,可以到 Extras 功能里进行等比高清放大

CFG: 提示词相关性,数值越大越相关,数值越小越不相关,一般建议 7-12 区间

Batch count/Batch size: 生成批次和每批数量,如果需要多图,可以调整下每批数量

Seed: 种子数,-1 表示随机,相同的种子数可以保持图像的一致性,如果觉得一张图的结构不错,但对风格不满意,可以将种子数固定,再调整 prompt 生成

图片

图生图

img2img 功能可以生成与原图相似构图色彩的画像,或者指定一部分内容进行变换。可以重点使用 Inpaint 图像修补这个功能:

Resize mode: 缩放模式,Just resize 只调整图片大小,如果输入与输出长宽比例不同,图片会被拉伸。Crop and resize 裁剪与调整大小,如果输入与输出长宽比例不同,会以图片中心向四周,将比例外的部分进行裁剪。Resize and fill 调整大小与填充,如果输入与输出分辨率不同,会以图片中心向四周,将比例内多余的部分进行填充

Mask blur: 蒙版模糊度,值越大与原图边缘的过度越平滑,越小则边缘越锐利

Mask mode: 蒙版模式,Inpaint masked 只重绘涂色部分,Inpaint not masked 重绘除了涂色的部分

Masked Content: 蒙版内容,fill 用其他内容填充,original 在原来的基础上重绘

Inpaint area: 重绘区域,Whole picture 整个图像区域,Only masked 只在蒙版区域

Denoising strength: 重绘幅度,值越大越自由发挥,越小越和原图接近

图片

ControlNet

安装完 ControlNet 后,在 txt2img 和 img2img 参数面板中均可以调用 ControlNet。操作说明:

Enable: 启用 ControlNet

Low VRAM: 低显存模式优化,建议 8G 显存以下开启

Guess mode: 猜测模式,可以不设置提示词,自动生成图片

Preprocessor: 选择预处理器主要有 OpenPose、Canny、HED、Scribble、MIsd.Seg、Normal Map、Depth

Model: ControlNet 模型,模型选择要与预处理器对应

Weight: 权重影响,使用 ControlNet 生成图片的权重占比影响

Guidance strength(T): 引导强度,值为 1时,代表每选代 1 步就会被 ControlNet引导1次

Annotator resolution: 数值越高,预处理图像越精细Canny low/high threshold: 控制最低和最高采样深度Resize mode: 图像大小模式,默认选择缩放至合适

Canvas width/height: 画布宽高

Create blank canvas: 创建空白画布

Preview annotator result: 预览注释器结果,得到一张 ControlNet 模型提取的特征图片

Hide annotator result: 隐藏预览图像窗

图片

LORA 模型训练说明

前面提到 LORA 模型具有训练速度快,模型大小适中 (100MB 左右),配置要求低 (8G 显存),能用少量图片训练出风格效果的优势。

以下简要介绍该模型的训练方法:

  最后想说

AIGC(AI Generated Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:

1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。

未来,AIGC技术将持续提升,同时也将与人工智能技术深度融合,在更多领域得到广泛应用。感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程。

对于从来没有接触过AI绘画的同学,我已经帮你们准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

AIGC学习必备工具和学习步骤

工具都帮大家整理好了,安装就可直接上手

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图、Stable Diffusion安装包、120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册、AI绘画视频教程、AIGC实战等等。

【Stable Diffusion安装包(含常用插件、模型)】

img

【AI绘画12000+提示词库】

img

【AI绘画800+骨骼姿势图】

img

【AI绘画视频合集】

img

还有一些已经总结好的学习笔记,可以学到不一样的思路。

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1824130.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Kafka性能优化策略综述:提升吞吐量与可靠性

Kafka性能优化策略综述:提升吞吐量与可靠性 优化 Kafka 的性能可以从多个方面入手,包括配置调优、架构设计和硬件资源优化。下面详细介绍一些常用的优化策略: 1. 分区设计 增加分区数量:更多的分区意味着更高的并行处理能力&a…

德国欧洲杯观战掌中宝

点击标题下「蓝色微信名」可快速关注 今天03:00,德国欧洲杯即将拉开帷幕,首战德国对阵苏格兰,24支欧洲国家队,分为6个小组,你是谁的拥趸? 本届欧洲杯的比赛时间有三个,分别是零点、凌晨三点和晚…

Ollama在MacOS、Linux本地部署千问大模型及实现WEB UI访问

一、前言 阿里通义千问发布了Qwen2,提供了0.5B~72B的量级模型,在​​Ollama官网​​可以搜索qwen2查看,本文提供了Ollama的下载(在线/离线安装)、Ollama运行模型、使用WebUI连接模型以及页面简单配置。 …

Real3D:利用真实世界图像扩展3D重建模型

原理: 在3D重建领域,单视图重建任务由于其固有的不确定性而充满挑战。为了克服这一难题,研究者们一直在探索如何利用大型数据集训练模型以学习形状和纹理的通用先验知识。然而,现有训练方法依赖于合成数据或多视图捕获&#xff0c…

【实例分享】银河麒麟高级服务器操作系统环境资源占用异常-情况分析及处理方法

1.情况描述 使用vsftp进行文件传输,发现sshd进程cpu占用异常,并且su和ssh登录相比正常机器会慢2秒左右。 图1 2.问题分析 通过strace跟踪su和sshd进程,有大量ssh:notty信息。 图2 配置ssh绕过pam模块认证后,ssh连接速…

【计算机视觉】人脸算法之图像处理基础知识(二)

图像处理基础知识(二) 1.图像的颜色空间转换 我们常见的图像通常由R(红色)、G(绿色)、B(蓝色)组成。但是在很多时候我们会将彩色图像转换成灰度图像进行处理。此时会用到cv2.cvtCo…

EasyGBS服务器和终端配置

服务器配置 修改easygbs.ini sip/host为本机IP,否则终端能登录,无法视频。 [sip] host192.168.3.190 终端用于登录的用户名和密码 default_usertest default_passwordtest1234 default_guest_userguest default_guest_passwordtest1234终端配置 关…

【Quartus 13.0】EP1C3144I7 部署4*6矩阵键盘

仿照 正点原子 的 Sample 修改 V2手册 P266 没有用这个 给出的手动按键控制的矩阵模块 为 4*6 矩阵键盘外接模块 每一个按键自带led,所以对应的接口是合并在一起的一个引脚 按下后 LED 亮,vice versa 底部 LED*8 目前不清楚有什么用 或许可以变成 16进…

使用sherpa-ncnn进行中文语音识别(ubuntu22)

获取该开源项目的渠道,是我在b站上,看到了由csukuangfj制作的一套语音识别视频。以下地址均为csukuangfj在视频中提供,感谢分享! 新一代Kaldi RISC-V: VisionFive2 上的实时中英文语音识别_哔哩哔哩_bilibili 开源项目地址&…

Vue41-vc实例与vm实例

一、 vc实例与vm实例的区别 vc实例与vm实例,99%结构都是类似的,仅2点不同: el属性data的书写格式 1-1、 el属性 vc有的功能vm都有,但是vm能通过el决定为哪个容器服务,但是vc却不行! 1-2、data的书写格式

利用Cesium和JS实现地点点聚合功能

引言 在实现基于地图的业务场景时,当地图上需要展示过多的标记点时,大量的分散点会使地图上显得杂乱无章,导致标记点对地图上的其他重要信息造成遮挡和混淆,降低地图整体的可读性。 标记点的聚合就很好的解决了这些痛点的同时&a…

理解Es的DSL语法(二):聚合

前一篇已经系统介绍过查询语法,详细可直接看上一篇文章(理解DSL语法(一)),本篇主要介绍DSL中的另一部分:聚合 理解Es中的聚合 虽然Elasticsearch 是一个基于 Lucene 的搜索引擎,但…

单通道触摸感应开关RH6016

1.简介 SOT23-6 RH6016 封装和丝印 RH6016 是一款内置稳压模块的单通道电容式触摸感应控制开关IC,可以替代传统的机械式开关。 RH6016可在有介质(如玻璃、亚克力、塑料、陶瓷等)隔离保护的情况下实现触摸功能,安全性高。 RH6016内置高精度稳压、上电复…

C++17并行算法与HIPSTDPAR

C17 parallel algorithms and HIPSTDPAR — ROCm Blogs (amd.com) C17标准在原有的C标准库中引入了并行算法的概念。像std::transform这样的并行版本算法保持了与常规串行版本相同的签名,只是增加了一个额外的参数来指定使用的执行策略。这种灵活性使得已经使用C标准…

数据采集项目2-业务数据同步

全量同步 每天都将业务数据库中的全部数据同步一份到数据仓库 全量同步采用DataX datax datax使用 执行 python /opt/module/datax/bin/datax.py /opt/module/datax/job/job.json 更多job.json配置文件在: 生成的DataX配置文件 java -jar datax-config-genera…

【RabbitMQ】RabbitMQ 的 6 种工作模式

RabbitMQ 的 6 种工作模式 1.简单模式2.工作队列模式3.交换机模式4.Routing 转发模式5.主题转发模式6.RPC 模式6.1 消息属性6.2 关联标识6.3 工作流程 7.小结 1.简单模式 生产者把消息放入队列,消费者获得消息,如下图所示。这个模式只有 一个消费者、一…

【python】python指南(三):使用正则表达式re提取文本中的http链接

一、引言 对于算法工程师来说,语言从来都不是关键,关键是快速学习以及解决问题的能力。大学的时候参加ACM/ICPC一直使用的是C语言,实习的时候做一个算法策略后台用的是php,毕业后做策略算法开发,因为要用spark&#x…

LeetCode | 520.检测大写字母

这道题直接分3种情况讨论:1、全部都为大写;2、全部都为小写;3、首字母大写其余小写。这里我借用了一个全是大写字母的串和一个全为小写字母的串进行比较 class Solution(object):def detectCapitalUse(self, word):""":type …

Python基础教程(十五):面向对象编程

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝&#x1f49…

【机器学习】Dify:AI智能体开发平台版本升级

一、引言 关于dify,之前力推过,大家可以跳转 AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署了解,今天主要以dify为例,分享一下如何进行版本升级。 二、版本升级 2.1 原方案 #首次…