笔记99:OSQP 求解器示例代码

news2025/2/24 21:27:10

注1:以下代码是 OSQP 的官方文档提供的示例,我加上了详细的注释;

注2:OSQP 库仅支持C语言,不支持C++,所以下面的示例代码使用的是C语言;但是 OSQP 求解库提供了针对C++的接口 OSQP-EIGEN;


二次规划问题:

二次规划标准形式
二次规划标准形式

代码:

注:涉及到 csc(按列压缩)的方式表达稀疏矩阵,在文章笔记98:按列压缩矩阵 csc_matrix 的 “含义”-CSDN博客有清晰讲解;

#include <stdlib.h>
#include "osqp.h"


int main(int argc, char **argv) {
    /* 加载问题数据 */
    // 使用 csc 方式定义矩阵 P
    OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };
    OSQPInt P_nnz = 3;
    OSQPInt P_i[3] = {0, 0, 1, };
    OSQPInt P_p[3] = {0, 1, 3, };
    // 定义向量 q
    OSQPFloat q[2] = {1.0, 1.0, };
    // 使用 csc 方式定义矩阵 A
    OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };
    OSQPInt A_nnz = 4;
    OSQPInt A_i[4] = {0, 1, 0, 2, };
    OSQPInt A_p[3] = {0, 2, 4, };
    // 定义向量 l
    OSQPFloat l[3] = {1.0, 0.0, 0.0, };
    // 定义向量 u
    OSQPFloat u[3] = {1.0, 0.7, 0.7, };
    // 状态变量x的维数
    OSQPInt n = 2;
    // 约束条件数目
    OSQPInt m = 3;


    /* 定义矩阵 */
    /* 作用:初始化稀疏矩阵 P 和 A */
    /*      OSQPCscMatrix 是 OSQP 中用来表示稀疏矩阵的结构体
            malloc(sizeof(OSQPCscMatrix)) 分配了足够的内存空间来存储一个 OSQPCscMatrix 结构体实例
            malloc 函数返回值为一个指向开辟出来的内存空间的指针(如果返回值为 NULL,代表内存分配失败) */
    OSQPCscMatrix* P = (OSQPCscMatrix*) malloc(sizeof(OSQPCscMatrix));
    OSQPCscMatrix* A = (OSQPCscMatrix*) malloc(sizeof(OSQPCscMatrix));


    /* 填充矩阵数据 */
    /* 注意:csc_set_data 函数是需要用户自定义的,OSQP 库中并未定义这个函数 */
    /* 作用:根据稀疏矩阵的三个特征数组,来填充得到稀疏矩阵 P 和 A */
    csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);
    csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);


    /* 退出标志 */
    /* 作用:定义退出标志变量,用于检查求解器的状态解 */
    /*          为0  -- 求解器成功求解
                为1  -- 问题无解
                为-1 -- 到达最大迭代次数,问题未能解决 */
    OSQPInt exitflag = 0;


    /* 定义求解器,设置 */
    OSQPSolver   *solver;       // 指针变量solver   -- 指向一个初始化的求解器实例
    OSQPSettings *settings;     // 指针变量settings -- 用于存储求解器的各个设置参数(收敛容差 / 最大迭代次数 ...)


    /* 初始化 OSQP 求解器的设置参数 */
    settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));        // 动态分配内存,并将 malloc 函数的返回值强制转化为 OSQPSettings* 类型
    if (settings) {                                                 // 检查内存分配是否成功(是否为 NULL)
        osqp_set_default_settings(settings);                        // 用 OSQP 自带的 osqp_set_default_settings 函数初始化 settings 的所有值,均取默认值
        settings->alpha = 1.0;                                      // 修改 OSQP 求解器的松弛参数
    }


    /* 初始化 OSQP 求解器的所有参数 */
    exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);  // 调用 OSQP 自带的 osqp_setup 函数初始化求解器;
                                                                    // 若初始化成功则返回0,若失败则返回非零值;


    /* 求解问题 */
    if (!exitflag) exitflag = osqp_solve(solver);                   // 调用 OSQP 自带的 osqp_solve 函数进行求解


    /* 访问求解结果 */
    // 注:osqp_solve 函数的结果会放在 OSQPSolver 结构体的成员变量中;具体来说,OSQPSolver 结构体包含一个指向 OSQPWorkspace 结构体的指针 work,而 OSQPWorkspace 结构体包含求解结果和其他相关信息
    /* OSQPWorkspace 结构体包含求解器工作区的所有数据,包括求解结果。以下是一些关键成员变量:
        x: 指向解向量 x 的指针,即优化变量的值;
        y: 指向对偶变量(拉格朗日乘数)向量 y 的指针;
        info: 指向 OSQPInfo 结构体的指针,包含有关求解过程的信息(例如迭代次数、状态等); */
    if (!exitflag) {
        OSQPFloat *solution = solver->work->solution->x;    // 优化变量 x
        OSQPFloat *dual_vars = solver->work->solution->y;   // 对偶变量 y

        // 输出解向量 x
        for (int i = 0; i < 2; i++) { printf("%f\n", solution[i]); }
        // 输出对偶变量 y
        for (int i = 0; i < 3; i++) { printf("%f\n", dual_vars[i]); }
    }


    /* 清理内存 */
    osqp_cleanup(solver);
    if (A) free(A);
    if (P) free(P);
    if (settings) free(settings);


    return (int)exitflag;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1820901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

免费的端口映射工具哪个好用

端口映射&#xff0c;即从一个网络环境下的端口映射到另一个网络环境下访问的过程。通常由软件方式来提供这一过程的实现&#xff0c;或一些客户端工具。当涉及内外网时&#xff0c;如内网端口地址映射到外网地址&#xff0c;即是内网穿透的原理。免费的端口映射工具有哪些&…

C++设计模式——Decorator装饰器模式

一&#xff0c;装饰器模式简介 装饰器模式是一种结构型设计模式&#xff0c; 它允许在不改变现有对象的情况下&#xff0c;动态地将功能添加到对象中。 装饰器模式是通过创建具有新行为的对象来实现的&#xff0c;这些对象将原始对象进行了包装。 装饰器模式遵循开放/关闭原…

对补码的理解:两种求法

课本的结论是&#xff1a;二进制数的最高位是符号位。符号位为 0 表示正数和 零 &#xff0c;符号位为 1 表示负数。 正数是原码反码补码都是一样的。负数的反码是&#xff1a;符号位不变&#xff0c;剩下位取反。 负数的补码是&#xff1a;符号位不变&#xff0c;剩下位取反&a…

u-boot(四)-顶层目录链接脚本文件(u-boot.lds)介绍

一&#xff0c;IMX6ULL映像文件 1&#xff0c;格式概述 对于IMX6ULL&#xff0c;烧写在EMMC、SD/TF卡上的程序&#xff0c;并不能“自己复制自己”&#xff0c;是“别人把它复制到内存里”。一上电首先运行的是boot ROM上的程序&#xff0c;它从EMMC、SD/TF卡上把程序复制进内…

妙用OSGraph:发掘GitHub知识图谱上的开源故事

作者&#xff1a;范志东 1. 何为OSGraph&#xff1f; OSGraph (Open Source Graph) 是一个开源图谱关系洞察工具&#xff0c;基于GitHub开源数据全域图谱&#xff0c;实现开发者行为、项目社区生态的分析洞察。可以为开发者、项目Owner、开源布道师、社区运营等提供简洁直观的…

电脑自带录屏在哪?电脑录屏,4个详细方法

在现代社会中&#xff0c;越来越多的人需要在电脑上录制视频&#xff0c;比如录制游戏操作、制作教学视频、演示文稿等等。因此&#xff0c;电脑录屏成为了一项非常重要的功能。那么电脑自带录屏在哪&#xff1f;本文将带领大家看看可以使用哪些方法进行录屏。 录屏方法一&…

SK海力士计划于2024年第四季度启动GDDR7大规模生产

SK海力士&#xff0c;作为HBM市场的领头羊&#xff0c;于6月13日宣布&#xff0c;公司目标于2024年第四季度开始其GDDR7芯片的大规模生产。 与此同时&#xff0c;美光科技在Computex展会上也宣布推出其GDDR7图形内存&#xff0c;目前正处于样品测试阶段。据AnandTech报道&#…

Python | Leetcode Python题解之第149题直线上最多的点数

题目&#xff1a; 题解&#xff1a; class Solution:def maxPoints(self, points: List[List[int]]) -> int:n len(points)if n < 2:return nres 2for i in range(n):x1, y1 points[i][0], points[i][1]has {}for j in range(i 1, n):x2, y2 points[j][0], points…

AI虚拟试穿技术:开启高保真、多场景、多样化服装组合的试穿应用

随着电子商务的快速发展,消费者对于在线购物体验的要求越来越高。特别是在服装领域,消费者渴望能够在购买前直观地了解服装的试穿效果。传统的虚拟试穿技术虽然已有一定的发展,但在不同场景下的高保真度和鲁棒性方面仍面临挑战。为此,我们研发了一种全新的AI虚拟试穿技术,…

当JS遇上NLP:开启图片分析的奇幻之旅

前言 在当今科技飞速发展的时代&#xff0c;JavaScript&#xff08;JS&#xff09;作为广泛应用的编程语言&#xff0c;展现出了强大的活力与无限的可能性。与此同时&#xff0c;自然语言处理&#xff08;NLP&#xff09;领域也正在经历着深刻的变革与进步。 当这两者碰撞在一…

探索AI视频生成技术的原理

探索AI视频生成技术的原理 随着人工智能技术的迅猛发展&#xff0c;AI在视频生成领域的应用已经引起了广泛关注。从娱乐、广告到教育和科学研究&#xff0c;AI视频生成技术正在彻底改变我们制作和消费视频内容的方式。本文将深入探讨AI视频生成技术的原理&#xff0c;解析其背…

解决CentOS的yum命令失效的问题

近日笔者对一台装有 CentOS 7.9 系统的服务器反复折腾&#xff0c;玩到最后发现 yum 命令用不了&#xff0c;总是报下面的错误信息&#xff1a; There was a problem importing one of the Python modules required to run yum. The error leading to this problem was:/usr/l…

通用大模型VS垂直大模型,你更青睐哪一方?

AI大模型之辩&#xff1a;通用与垂直&#xff0c;谁将引领未来&#xff1f; 在人工智能&#xff08;AI&#xff09;领域&#xff0c;大模型技术的崛起无疑为整个行业带来了革命性的变革。然而&#xff0c;随着技术的深入发展&#xff0c;AI大模型的战场似乎正在悄然分化&#…

9.常见集合

目录 一、三种常见集合二、Vector2.1 特性2.2 创建并更新Vector2.3 读取Vector中的元素2.4 遍历元素2.5 储存不同类型的值 三、字符串3.1 概念3.2 新建3.2 更新3.3 索引字符串3.4 字符串切片3.5 字符串遍历 四、哈希map4.1 基本概念4.2 新建哈希map4.3 访问哈希map中的值4.4 更…

使用adb通过wifi连接手机

1&#xff0c;手机打开开发者模式&#xff0c;打开无线调试 2&#xff0c;命令行使用adb命令配对&#xff1a; adb pair 192.168.0.102:40731 输入验证码&#xff1a;422859 3&#xff0c;连接设备&#xff1a; adb connect 192.168.0.102:36995 4&#xff0c;查看连接状态:…

【云岚到家】-day03-2-门户缓存实现实战

【云岚到家】-day03-2-门户缓存实现实战 5 缓存实现5.2 定时任务更新缓存5.2.1 分布式调度平台5.2.1.1 jdk提供的Timer定时器5.2.1.2 使用第三方Quartz方式5.2.1.3 使用分布式调度平台XXL-JOB 5.2.2 XXL-JOB5.2.2.1 介绍5.2.2.2 部署调度中心5.2.2.3 执行器 5.2.2 定义缓存更新…

二开版视频CMS完整运营源码/新版漂亮APP手机模板/集成员分销功能等

一个二开的影视CMS&#xff0c;直接上传源码至网站根目录&#xff0c;访问网站域名即可安装。 测试环境&#xff1a;Nginx 1.20.1—MySQL 5.6.50–PHP-7.2&#xff08;安装拓展/fileinfo&#xff09; 上传源码&#xff0c;访问域名直接安装 后台地址&#xff1a;域名/MDadmi…

4. 案例研究-接口程序

4. 案例研究-接口程序 本章通过一个案例研究, 来展示设计互相配合的函数的过程.4.1 turtle 模块 创建一个文件mypolygon.py, 并输入如下代码:import turtle bob turtle.Turtle() print(bob)# 这一句的作用是让画板停留, 等手动点击x关闭画板, 程序才结束. # 否则程序执行完毕…

Spring中的IOC

IOC&#xff08;Inversion of Control&#xff0c;控制反转&#xff09;是Spring框架核心概念之一。它是一种设计原则&#xff0c;用来实现对象的松耦合和依赖管理。在传统的编程中&#xff0c;对象负责创建或查找其依赖对象&#xff0c;而在IOC模式下&#xff0c;这些职责被移…

C++ | Leetcode C++题解之第150题逆波兰表达式求值

题目&#xff1a; 题解&#xff1a; class Solution { public:int evalRPN(vector<string>& tokens) {int n tokens.size();vector<int> stk((n 1) / 2);int index -1;for (int i 0; i < n; i) {string& token tokens[i];if (token.length() >…