借助Historian Connector + TDengine,打造工业创新底座

news2024/11/19 13:37:22

在工业自动化的领域中,数据的采集、存储和分析是实现高效决策和操作的基石。AVEVA Historian (原 Wonderware Historian) 作为领先的工业实时数据库,专注于收集和存储高保真度的历史工艺数据。与此同时,TDengine 作为一款专为时序数据打造的高性能数据库,在处理和分析大量实时、历史时序数据方面展现出无与伦比的优越性。

在最新发布的 TDengine 3.2.3.0 版本中,我们进一步更新了 TDengine 的数据接入功能,推出了一款新的连接器,旨在实现 AVEVA Historian 与 TDengine 的集成。基于此,本文将阐述把 AVEVA Historian 的历史数据和实时数据整合进入 TDengine 的创新方法,以及这种结合如何能够极大地提升数据利用率,打造一个工业创新底座,推动工业自动化高效发展。

从时序数据的关键应用场景分析优化方案

我们先来回顾下当下工业场景几种典型时序数据处理方案:

  1. 关系型数据库(例如 Oracle/MySQL、达梦、南大通用):关系型数据库在处理海量时序数据时,读写性能较低,分布式支持差。随着数据的增加,查询的速度也会变慢。典型的应用场景包括低频监控场景和电力 SCADA 历史库。

  2. 传统工业实时库(例如 PI、AVEVA Historian、亚控、海迅):尽管传统工业实时库在工业数据存储中有着长期的功效,但它们的架构已经过时,缺乏分布式解决方案,不能水平扩展。而且,它们依赖于 Windows 等环境,在数据分析能力上较弱,且往往是封闭系统。这类数据库主要用于 SCADA 系统和生产监控系统。

  3. NoSQL 数据库(例如 MongoDB、Cassandra):这类数据库的问题在于计算实时性较差,查询速度慢,对内存和 CPU 的计算开销大,没有针对时序数据的优化。它们主要用于处理非结构化数据存储和爬虫数据。

  4. Hadoop 大数据平台(例如 HBase、Zookeeper、Redis、Flink/Spark):虽然这类平台支持分布式,但其采用非结构化方式处理时序数据,组件众多,架构臃肿,单节点效率低,硬件和人力维护成本非常高。它们主要用于通用大数据平台和舆情电商大数据。

在当前的工业企业中,创新应用需求旺盛,时序数据处理关键的应用场景包括智能决策支持、设备故障预警、产品质量分析与预测、智能制造与数字孪生、能耗管理与节能减排。这些关键场景突出了工业时序大数据在创新应用中的核心价值,工业企业只有采用先进的解决方案,才能够加快创新步伐并在竞争激烈的市场中实现差异化。

在工业场景中,多个工厂或车间通常会部署独立的 SCADA/Historian 系统,如 AVEVA Wonderware 和 PI 系统,以管理实时和历史数据。这是目前工业自动化的常态,数据分布在各个现场的数据库中。

时序数据向中心侧集中的优势在于,它可以增强对数据的整体控制力,使得企业更好地利用它们的数据资产。数据的集中处理为全局数据可视化带来了可能,为业务创新提供灵感和快速验证的手段,帮助企业更好地管理和分析数据,快速响应而提取有价值的洞见,并依此及时做出商业决策。

SCADA/Historian 也提供了数据集中方案,确实在某些方面能够满足需求,但面临的挑战是它们难以支持海量测点(传感器、设备等)的数据量,难以满足创新应用的对大量获取时序数据的需求。当数据量非常大时,SCADA/Historian 数据消费接口的能力较弱,可能会经历高延时,甚至无法获取需要的数据集。

要有效应对这些挑战,需要从以下几个方面优化方案:

  1. 利用好已有的投资:很多情况下,企业已经采购、部署了多套 SCADA/Historian,投资已经形成,方案必须考虑如何充分利用已建成系统的能力,避免重复投资。

  2. 提高数据消费接口的能力:增强数据接口的能力,以确保即使在数据量很大时也能快速、高效地消费数据。

  3. 降低延时:提升系统的性能以减少处理和提取数据时的延时,确保可以及时地获取数据。

  4. 实现实时和历史数据的整合:数据的整合可以提高存储空间利用率,并为分析和决策提供更完整的数据视图。实时和历史数据的结合还能支持更复杂的创新应用,如预测维护、能耗管理和优化操作。

  5. 支撑海量测点:提高系统能够处理的测点数量,以适应越来越多传感器数据的需求。

  6. 推动创新应用的发展:构建支持创新的基础架构,应对创新应用需求、新兴的工业应用,如预测性维护、资产性能管理、能效优化等,需要对数据进行更深层次的消费、分析和更快速的处理。

TDengine 作为一款极简的时序大数据平台,具有高效的数据写入和查询性能,适合处理海量、时序性的工业数据。除了实时与历史合一的时序库核心功能外,还提供了消息队列、事件驱动流计算、读写缓存,以及多数据源接入的能力。如何实现融合上述六点的方案优化,TDengine 也给出了答案。

整合 AVEVA Historian 数据到 TDengine

本文方案中,将利用 TDengine 企业版 taosX 的多数据源接入能力汇集多路 AVEVA Historian 现场数据,持久化至中心侧 TDengine 集群。

其特点如下:

  1. 数据迁移:从 AVEVA Historian 系统迁移现有的历史数据到 TDengine。

  2. 数据同步:支持实时和历史数据的同步,实现 AVEVA Historian 实时(Runtime.dbo.Live)和历史数据(Runtime.dbo.History)至 TDengine 之间的数据同步。

  3. 支持海量测点:TDengine 支持 10 亿时间线,轻松应对目前工业大数据场景。

  4. 充分利用已有投资:已有的 AVEVA Historian 将继续发挥作用,同时在 TDengine 平台上支持创新业务的开发。

  5. 时序数据优化存储:利用 TDengine 的高效数据压缩和存储机制,优化数据在新平台上的存储。

  6. 查询性能显著提升:与 Historian 的查询性能比较,TDengine 无论在投影查询还是聚合查询,均提升几个数量级的性能。

  7. 支持数据订阅:TDengine 提供了结构化的消息队列,当数据入库的同时,可根据业务需要创建主题,支持实时消费以驱动创新应用落地。

  8. 支持多种部署环境:LInux & Windows

  9. 支持完整 ETL 特性:taosX 组件支持完整的解析、提取拆分、过滤以及数据映射,零代码即可完成外部数据源接入 TDengine。

本方案的基本环境要求有:

  • AVEVA Historian 接入需 TDengine 企业版支持

  • 远端采集需通过代理模式接入,采集现场须部署 taosX Agent

  • 支持 AVEVA Historian 2017 以后的版本

下面以数据迁移为例,介绍 AVEVA Historian 的历史视图数据如何迁移至 TDengine。

  1. 先完成准备工作:在 TDengine 中建库、建超级表

  2. 登入 taosExplorer,创建数据写入任务,类型:AVEVA Historian

  3. 填写任务基本信息:任务名称、目标数据库、Historian 服务器地址、端口、认证信息

  4. 填写采集配置:migrate 模式、选择标签点位范围(默认所有点位)、设置源数据起始终止时间、查询时间窗口跨度

  5. 数据解析与过滤:因 Historian 发送过来的数据是结构化的,无需额外配置解析器和过滤器

  6. 数据映射:选择目标超级表后,系统会自动匹配部分字段,没有匹配的字段,手工指定映射关系即可

  7. 启动任务

数据同步 synchronize 与数据迁移 migrate 类似,不同之处在于:

  • 支持两个来源:Runtime.dbo.History & Runtime.dbo.Live

  • 任务结束时间可以不设定,意味着可以一直同步下去,直至人工终止

本方案还可以与 OPC 方案融合:历史数据通过 Historian 导入 TDengine,实时数据通过 OPC 汇集至 TDengine。新方案的优点是,通过 OPC 支持的订阅特性实现实时数据即时采集,一旦变化就立刻采集至 TDengine。

新方案同样是基于 taosX 组件,维护方便。

结语

对于曾投资 AVEVA Wonderware 的工业企业,在面临数字化转型的挑战时,Historian Connector 结合 TDengine 的解决方案便能成为他们的强大后盾。此方案不仅能快速打通数字化转型的难关,还能携业务创新之力,开拓数字化潜能。

此外,本方案具有优秀的融合能力,可与各类数据采集解决方案无缝结合。例如,通过与 OPC Connector 数据采集方案的整合,历史数据得以从 Historian 顺畅导入至 TDengine,同时实时数据亦可通过 OPC 即时汇集至 TDengine,实现现场时序数据的高效集中处理。

本方案所依托的是 TDengine Enterprise 企业版的强大功能(且未来我们将推出 TDengine Cloud 版本)。如若贵企业正寻求这方面的解决方案,欢迎主动接洽北京涛思的专业商务团队,一起探索先进的数据处理之道。

关于 AVEVA Wonderware

Wonderware 公司成立于 1987 年,总部位于美国洛杉矶,是全球工业自动化领域的知名品牌。其先被施耐德电气收购,后并入 AVEVA。AVEVA Wonderware 应用行业广泛,在连续生产过程控制和离散制造领域优势明显。主要应用于烟草生产、水处理、电力、石油天然气、化工、钢铁冶金、食品饮料、制药、汽车制造、物流仓储等行业。其产品包括但不限于 In Touch HMI(人机界面)、System Platform(系统平台)、Historian(历史数据记录与分析)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1811577.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于会议论文/CPCI/ISTP会议论文

关于会议论文 会议论文是公开发表的学术论文,一般正式的国际学术会议都会公开征稿,并要求录用的论文在会议上进行宣读、交流,然后集结出版,这就是我们常说的会议论文集,而这些发表的论文也可用于硕博毕业、项目结题、…

视频直播点播EasyDSS平台授权时,出现授权时间即将到期的提示是什么原因?

视频直播点播EasyDSS平台具备灵活的视频能力,包括直播、点播、转码、管理、录像、检索、时移回看等,平台支持音视频采集、视频推拉流、播放H.265编码视频、存储、分发等能力服务,可应用在无人机推流、在线直播、虚拟直播、远程培训等场景中。…

跃入AI新纪元:亚马逊云科技LLM全景培训,解锁AI构建者之路

亲爱的技术爱好者们,你是否也对大语言模型(LLM)的神奇魅力所吸引,渴望深入探索其背后的技术奥秘?今天,我要为大家推荐一份超级硬核的学习资源——亚马逊云科技 对话AI 构建者:从基础到应用的LLM…

Linux安装Docker | 使用国内镜像

环境 CentOS7 先确认能够上网 curl www.baidu.com返回该输出说明网络OK 步骤一:安装gcc 和 gcc-c yum -y install gccyum -y install gcc-c步骤二:安装Docker仓库 yum install -y yum-utils接下来配置yum的国内镜像 yum-config-manager --add-re…

基于变分自动编码器VAE的电池剩余使用寿命RUL估计

加载模块 import math import itertools import numpy as np import pandas as pd import seaborn as sns import tensorflow as tf from keras import layers from sklearn.svm import SVR from tensorflow import keras from keras import backend as K import matplotlib.p…

Unity | Shader基础知识(番外:了解内置Shader-Standard-含specular模式<二>)

目录 前言 一、Standard参数详解 1.NormalMap法线贴图 2.HeightMap高度贴图 3.Occlusion遮挡贴图 4.DetailMask细节遮挡 5.Emission自发光 6.Tiling铺地砖和Offset偏移度 二、Standard-Specular setup模式 三、作者的碎碎念 前言 Unity | Shader基础知识(番外&#xf…

【ATU Book-i.MX8系列 - TFLite 进阶】 NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测

NXP i.MX8M Plus 实现高效 Mobilenet SSD 物体检测 一、概述 在 边缘运算(Edge Computing) 领域中,轻量级的模型扮演着举足轻重的角色。因此,如何在有限硬体资源下实现电脑视觉(Computer vision) 应用是个极具挑战性的课题。特别…

Flow Launcher:Windows高效启动与搜索工具

目录 一、软件简介 二、软件安装 三、软件功能介绍 3.1 快速启动应用 3.2 文件快速搜索 3.3 多功能操作中心 3.4 支持插件扩展 一、软件简介 Flow Launcher 是基于C#编程语言开发一款专为Windows设计的高效启动与搜索工具,它以创新简洁的界面重新定义了用户…

基于SWIFT和Qwen1.5-14B-Chat进行大模型LoRA微调测试

基于SWIFT和Qwen1.5-14B-Chat进行大模型LoRA微调测试 环境准备 基础环境 操作系统:Ubuntu 18.04.5 LTS (GNU/Linux 3.10.0-1127.el7.x86_64 x86_64)Anaconda3:Anaconda3-2023.03-1-Linux-x86_64根据服务器网络情况配置好conda源和pip源,此…

揭秘!义乌理阳是否涉足海外拼多多选品师项目?

在全球化的今天,跨境电商已成为一种趋势,越来越多的企业开始关注并投入这一领域。而拼多多作为国内知名的电商平台,其海外业务也在迅速扩展。那么,义乌理阳信息咨询服务有限公司是否有海外拼多多选品师的项目呢?下面我们将对此进…

JavaSE中的IO(输入/输出)字节流字符流

JavaSE中的IO(输入/输出)知识是一个广泛的领域,它涵盖了如何在Java程序中进行数据的读取和写入。以下是对JavaSE中IO知识的一个清晰归纳: 一、基础知识 流(Stream)的概念 流是一组有顺序的、有起点和终点…

大模型应用之基于 Langchain 的测试用例生成

一 用例生成实践效果 在组内的日常工作安排中,持续优化测试技术、提高测试效率始终是重点任务。近期,我们在探索实践使用大模型生成测试用例,期望能够借助其强大的自然语言处理能力,自动化地生成更全面和高质量的测试用例。 当前…

【通过新能源汽车的智慧数字底盘技术看计算机的相关技术堆栈?以后是软硬结合的全能程序员的天下,取代全栈(前后端都会的全栈程序员)】

汽车的“智慧数字底盘”是一个综合性的技术平台,旨在提升车辆的性能、安全性和驾驶体验。它集成了多种先进的技术和系统,是全能程序员的必杀技! 1. 传感器技术 a. 激光雷达(LiDAR) 用于生成高分辨率的3D地图&#…

PG sql调优案例学习

一,开发范式 1.不要轻易把字段嵌入到表达式 例:在sal列上有索引,但是条件语句中把sal列放在了表达式当中,导致索引被压抑,因为索引里面储存的是sal列的值,而不是sal加上100以后的值。 在条件中查询谁的工资1002000。这样写即使在sal上有索引也会走全表…

【倪诗韵神品连珠琴】音质纯净共鸣好,漆髹水墨黑云纹,讲究

【倪诗韵神品连珠琴】音质纯净共鸣好,漆髹水墨黑云纹,用料讲究。 此琴音质纯净共鸣好,非常清透,适合清风清新俊逸之流,琴体造型秀气,漆髹水墨黑云纹,用料讲究,木材纹理竖直而无疤。琴…

【制作100个unity游戏之27】使用unity复刻经典游戏《植物大战僵尸》,制作属于自己的植物大战僵尸随机版和杂交版7(附带项目源码)

最终效果 系列导航 文章目录 最终效果系列导航前言绘制进度条UI控制关卡进度测试按配置表使用关卡进度变化源码结束语 前言 本节主要实现关卡进度条的功能 绘制进度条UI 控制关卡进度测试 新增ProgressPanel代码,控制关卡进度 public class ProgressPanel : Mon…

kettle学习(利用jsonPath定位,json文件转换)

kettle学习(利用jsonPath定位,json文件转换) 于数据处理的广袤天地间,我们时常需应对各类繁杂状况与各式格式。Kettle 作为极具威力的数据集成利器,赋予了我们诸多功能与无限可能此次博客里,我们将重点投向…

一站到底-Vue移动端从零到一构建高效应用

​🌈个人主页:前端青山 🔥系列专栏:vue篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:一文精通Vue移动端:从零到一构建高效应用 目录 1、项目创建 2、引入组件库 二、功能实…

上位机图像处理和嵌入式模块部署(f407 mcu内部flash编程)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 对于f407这样的mcu来说,有的时候我们需要对mcu内部的flash进行编程处理。有两种情况需要对flash进行编程,一种情况是可能一…

深度学习500问——Chapter10:迁移学习(2)

文章目录 11.2 迁移学习的基本思路有哪些 11.2.1 基于样本迁移 11.2.2 基于特征迁移 11.2.3 基于模型迁移 11.2.4 基于关系迁移 11.2 迁移学习的基本思路有哪些 迁移学习的基本方法可以分为四种。这四种基本方法分别是:基于样本的迁移,基于模型的迁移&a…