⌈ 传知代码 ⌋ 深度知识追踪

news2024/11/10 7:47:47

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. 论文方法
  • 🍞三. 实验部分
  • 🍞四. 关键代码
  • 🫓总结


💡本章重点

  • 深度知识追踪

🍞一. 概述

知识追踪的任务是对学生的知识进行建模,以便准确预测学生在未来的学习互动中的表现。简言之,我们利用学生的历史答题序列数据,通过分析学生与题目的交互结果,来推断学生当前的知识水平以及题目的特征,从而预测学生在未来题目上的表现。

过去的模型大多依赖于人工定义的交互函数,例如IRT模型,该模型定义了学生能力参数以及题目的难度、区分度和猜测性参数。

虽然也有改进不依赖交互函数的模型,如刘淇提出的NeuralCD模型,但它们更适用于对学生历史答题数据的静态评估,无法实现动态追踪,存在冷启动问题。

深度知识追《Deep Knowledge Tracing》踪将时间上“深度”的灵活递归神经网络(RNN)应用到知识追踪任务中。这一系列模型使用大量的人工“神经元”来表示潜在的知识状态及其时间动态,并且允许从数据中学习学生知识的潜在变量表示,而不是直接硬编码。通过这种方法,深度知识追踪模型解决了冷启动问题,并且能够动态追踪学生的知识状态变化,使得模型更适用于真实的学习情境。

这里对 EduKTM 的DKT方法进行改进,修改了参数,提高了正确率。


🍞二. 论文方法

传统的递归神经网络(RNNs)将输入序列 映射为输出序列 ,这是通过计算一系列隐藏状态 实现的,隐藏状态可以被看做来自过去观测的相关信息的编码,用于对未来的预测,如下图所示:

在这里插入图片描述
具体地说,DKT首先根据学生的历史做题情况将每个学生的交互转换为输入序列,以便RNN模型可以处理。对于唯一练习数量较少的数据集,使用one-hot编码表示学生的每次交互,其中包括练习题的编号以及学生是否正确回答。而对于具有大量唯一练习的数据集,则采用随机向量表示每个交互,以避免one-hot编码的维度爆炸问题。

接着,DKT使用RNN模型对转换后的学生交互序列进行训练。这些模型将学生的历史信息编码为一系列隐藏状态,从而捕捉学生知识状态的时间动态。最后,DKT输出一个与练习数量相等的向量,其中每个条目表示学生在相应练习上回答正确的预测概率。通过这种方式,DKT能够实现对学生知识状态的动态追踪,从而提高了对学生未来表现的预测准确性。同时,由于采用了RNN等深度学习模型,DKT还能够适应不同规模和复杂度的学生交互数据集,具有较好的泛化能力。


🍞三. 实验部分

数据集

Assistment 数据集是一个用于教育领域的常用数据集,用于研究和评估教育技术和学习分析模型。该数据集由来自辅助学习(Assistments)在线学习平台的真实学生交互数据组成。这些数据包括学生对在线练习题的回答情况、每个练习的元数据(如题目内容、难度等)、学生的个人信息(如年级、性别等)以及其他与学习过程相关的信息。

在这里插入图片描述
实验步骤

  • step1:安装环境依赖
    在这里插入图片描述
  • step2:下载数据集,将其变成one-hot编码

在这里插入图片描述

  • step3:进行训练
    在这里插入图片描述
  • 实验结果

在这里插入图片描述


🍞四. 关键代码

import numpy as np
import torch
import torch.utils.data as Data
from torch.utils.data.dataset import Dataset
import tqdm


NUM_QUESTIONS = 123
BATCH_SIZE = 64
HIDDEN_SIZE = 10
NUM_LAYERS = 1


def get_data_loader(data_path, batch_size, shuffle=False):
    data = torch.FloatTensor(np.load(data_path))
    data_loader = Data.DataLoader(data, batch_size=batch_size, shuffle=shuffle)
    return data_loader


train_loader = get_data_loader('./data/2009_skill_builder_data_corrected/train_data.npy', BATCH_SIZE, True)
test_loader = get_data_loader('./data/2009_skill_builder_data_corrected/test_data.npy', BATCH_SIZE, False)
#%% md
# Training and Persistence
#%%
import logging
logging.getLogger().setLevel(logging.INFO)
#%%
from EduKTM import DKT

dkt = DKT(NUM_QUESTIONS, HIDDEN_SIZE, NUM_LAYERS)
dkt.train(train_loader, epoch=30)
dkt.save("dkt.params")
#%% md
# Loading and Testing
#%%
dkt.load("dkt.params")
auc = dkt.eval(test_loader)
print("auc: %.6f" % auc)

🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1807633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

最新大屏幕互动系统PHP源码 附动态背景图和配乐素材 含搭建教程

简介: 最新大屏幕互动系统PHP源码 附动态背景图和配乐素材 含搭建教程 测试环境:NginxPHP7.0MySQL5.6 ![CYA]CPZMY8NK8YADA.png](https://img-blog.csdnimg.cn/img_convert/1e38b378e1aa6e834f56ec9a83df064c.png)

在 Ubuntu 中安装 Docker

在 Ubuntu 中安装 Docker 首先,更新你的 Ubuntu 系统。 1、更新 Ubuntu 打开终端,依次运行下列命令: $ sudo apt update $ sudo apt upgrade $ sudo apt full-upgrade 2、添加 Docker 库 首先,安装必要的证书并允许 apt 包…

快速测试 Mybatis 复杂SQL,无需启动 Spring

快速测试mybatis的sql 当我们写完sql后,我们需要测试下sql是否符合预期,在填入各种参数后能否正常工作,尤其是对于复杂的sql。 一般我们测试可能是如下的代码: 由于需要启动spring,当项目较大的时候启动速度很慢,有些…

JAVAEE值网络编程(2)_TCP流套接字及通信模型、TCP网络编程及代码实例

前言 在上一节内容中,我们介绍了什么是套接字,以及使用UDP数据报套接字网络编程, 最后我们还介绍了Java数据报套接字通信模型以及相关代码实例。在这一节我们将会介绍TCP流套接字编程。 一、流套接字及通信模型 1.1 TCP套接字 TCP&#xff0…

elasticsearch hanlp 插件安装操作

elasticsearch hanlp 插件安装操作 下载 hanlp 插件上传hanlp插件到elasticsearch服务器安装hanlp插件kibana测试 下载 hanlp 插件 这里大家根据自己对应的 elasticsearch 版本下载匹配版本的 hanlp 插件,由于 hanlp 及 elasticsearch 各个版本之间差别较大&#x…

基于小波样条框架的一维时间序列信号降噪方法(MATLAB R2018A)

1952年,DUFFIN在研究非调和Fourier级数时引入了Hilbert空间中框架的概念,然而并没有引起很大的反响。1986年,DAUBECHIES研究发现利用框架可以将L2(R)中的函数展开成类似标准正交基的级数,并且用框架研究函数时所需的条件要比用标准…

C#操作MySQL从入门到精通(17)——使用联结

前言: 我们在查询数据的过程中有时候查询的数据不是来自一个表而是来自多个表,本文使用的测试数据如下: 本文使用了两个表student_info、address_info student_info的数据如下: address_info的数据如下: 1、内联结 所谓内联结就是求交集,两个表都有的数据才是有效数…

机器学习周记(第四十二周:AT-LSTM)2024.6.3~2024.6.9

目录 摘要Abstract一、文献阅读1. 题目2. abstract3. 网络架构3.1 LSTM3.2 注意力机制概述3.3 AT-LSTM3.4 数据预处理 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程4.3.1 训练参数4.3.2 数据集4.3.3 实验设置4.3.4 实验结果 5. 基于pytorch的transformer 摘要 本周阅读…

Python魔法之旅专栏(导航)

目录 推荐阅读 1、Python筑基之旅 2、Python函数之旅 3、Python算法之旅 4、博客个人主页 首先,感谢老铁们一直以来对我的支持与厚爱,让我能坚持把Python魔法方法专栏更新完毕! 其次,为了方便大家查阅,我将此专栏…

初识 java 2

1. idea 的调试 1. 点击鼠标左键设置断点 2.运行到断点处 点击 或点击鼠标右键,再点击 使代码运行到断点处,得到 2. 输出到控制台 System.out.println(value);//输出指定的内容,并换行 value 要打印的内容System.out.print(value);…

半年了,3588来了

端午两天,LAB1964又搞了新东西,RK3588,已经算是千呼万唤始出来,等的时间也是足够久了。 ——价格贵 RK3588 是真的贵,实验室老板贴了10片3588套片,就花了将近4000块钱,所以说,决定要…

12. Django 第三方功能应用

12. 第三方功能应用 因为Django具有很强的可扩展性, 所以延伸了第三方功能应用. 通过本章的学习, 读者能够在网站开发过程中快速实现API接口开发, 验证码生成与使用, 站内搜索引擎, 第三方网站实现用户注册, 异步任务和定时任务, 即时通信等功能.12.1 Django Rest Framework框…

将克隆到本地的6.824项目上传到自己的github

前置知识见:把自己在本地完成的mit6.s081项目上传到自己的github仓库里_mit6.s081 lab上传-CSDN博客 先在github建立一个自己的仓库 由于github可以给自己的主分支改名了,我这次是勾选了创建README文件 在本地同样是建立一条remote分支 git remote add…

C语言详解文件操作

目录 什么是文件? 为什么使用文件? 程序文件和数据文件、文本文件和二进制文件 1.程序文件和数据文件 1.1程序文件 1.2数据文件 2.文本文件和二进制文件 文件的打开和关闭(流、标准流、文件指针和文件的打开与关闭) 1.流和标…

体素技术在AI绘画中的革新作用

随着人工智能技术的不断进步,AI绘画已经成为艺术创作和视觉设计领域的一大趋势。在众多推动AI绘画发展的技术中,体素技术以其独特的优势,正在逐渐改变着我们对计算机生成图像的认识。本文旨在探讨体素技术在AI绘画中的应用与影响,…

电脑存储设备,固态硬盘介绍,usb接口

简介 存储设备分为两大类主存和辅存,另外还有专门提供存储服务的网络存储 主存储器 随机存取存储器(RAM, Random Access Memory) 特点:高速、易失性存储器,断电后数据丢失。用途:临时存储正在使用的数据…

超详解——python数字和运算——基础篇

目录 1.位运算 2. 常用内置函数/模块 math模块: random模块: decimal模块: 3.内置函数: 总结: 1.位运算 位运算是对整数在内存中的二进制表示进行操作。Python支持以下常见的位运算符: 按位与&…

adb shell进入设备后的命令

目录 一、查看删除手机 /data/local/tmp/下的文件 二、设置权限 三、查看手机设备正在运行的服务 四、可能需要的adb 命令 一、查看删除手机 /data/local/tmp/下的文件 可以通过以下命令: adb shell # 进入设备 ls /data/local/tmp/ # 查看文件夹下的内容…

文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及电力不平衡风险的配电网分区协同规划》

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

基于小波的多元信号降噪-基于马氏距离和EDF统计(MATLAB R2018a)

马氏距离是度量学习中一种常用的距离指标,通常被用作评定数据样本间的相似度,可以应对高维线性分布数据中各维度间非独立同分布的问题,计算方法如下。 (1)计算样本向量的平均值。 (2)计算样本向…