Redis的删除策略与内存淘汰

news2025/1/7 15:03:00

文章目录

    • 删除策略
      • 设置过期时间的常用命令
      • 过期删除策略
    • 内存淘汰
      • 相关设置
      • LRU算法
      • LFU
    • 总结

在redis使用过程中,常常遇到以下问题:

  1. 如何设置Redis键的过期时间?
  2. 设置完一个键的过期时间后,到了这个时间,这个键还能获取到么?假如获取不到那这个键还占据着内存吗?
  3. 如何设置Redis的内存大小?当内存满了之后,Redis有哪些内存淘汰策略?我们又该如何选择?

小面就具体聊一聊redis的删除策略和内存淘汰机制

删除策略

设置过期时间的常用命令

Redis提供了四个命令来设置过期时间(生存时间)。

  • EXPIRE :表示将键 key 的生存时间设置为 ttl 秒。
  • PEXPIRE :表示将键 key 的生存时间设置为 ttl 毫秒。
  • EXPIREAT :表示将键 key 的生存时间设置为 timestamp 所指定的秒数时间戳。
  • PEXPIREAT :表示将键 key 的生存时间设置为 timestamp 所指定的毫秒数时间戳。

在Redis内部实现中,前面三个设置过期时间的命令最后都会转换成最后一个PEXPIREAT 命令来完成。
另外:

  • PERSIST :表示将key的过期时间移除。
  • TTL :以秒的单位返回键 key 的剩余生存时间。
  • PTTL :以毫秒的单位返回键 key 的剩余生存时间。

过期删除策略

在Redis内部,每当我们设置一个键的过期时间时,Redis就会将该键带上过期时间存放到一个过期字典中。当我们查询一个键时,Redis便首先检查该键是否存在过期字典中,如果存在,那就获取其过期时间。然后将过期时间和当前系统时间进行比对,比系统时间大,那就没有过期;反之判定该键过期

通常删除某个key,我们有如下三种方式进行处理。

  1. 定时删除:在设置某个key 的过期时间同时,我们创建一个定时器,让定时器在该过期时间到来时,立即执行对其进行删除的操作。
  2. 惰性删除:设置该key 过期时间后,我们不去管它,当需要该key时,我们在检查其是否过期,如果过期,我们就删掉它,反之返回该key
  3. 定期删除:每隔一段时间,我们就对一些key进行检查,删除里面过期的key。

Redis的过期删除策略就是:惰性删除和定期删除两种策略配合使用

惰性删除:Redis的惰性删除策略由 db.c/expireIfNeeded 函数实现,所有键读写命令执行之前都会调用expireIfNeeded 函数对其进行检查,如果过期,则删除该键,然后执行键不存在的操作;未过期则不作操作,继续执行原有的命令。

定期删除:由redis.c/activeExpireCycle 函数实现,函数以一定的频率运行,每次运行时,都从一定数量的数据库中取出一定数量的随机键进行检查,并删除其中的过期键。

注意:并不是一次运行就检查所有的库,所有的键,而是随机检查一定数量的键。定期删除函数的运行频率,在Redis2.6版本中,规定每秒运行10次,大概100ms运行一次。在Redis2.8版本后,可以通过修改配置文件redis.conf 的 hz 选项来调整这个次数。

在这里插入图片描述

内存淘汰

Redis 缓存使用内存来保存数据,避免业务应用从后端数据库中读取数据,可以提升应用的响应速度。

为了保证较高的性价比,缓存的空间容量必然要小于后端数据库的数据总量。不过,内存大小毕竟有限,随着要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,该怎么办呢?
解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间。

相关设置

设置Redis最大内存

在配置文件redis.conf 中,可以通过参数 maxmemory 来设定最大内存:

在这里插入图片描述
不设定该参数默认是无限制的,但是通常会设定其为物理内存的四分之三

设置淘汰方式

当现有内存大于 maxmemory 时,便会触发redis主动淘汰内存方式,通过设置 maxmemory-policy 有如下几种淘汰方式:

  • volatile-lru :设置了过期时间的key使用LRU算法淘汰;
  • allkeys-lru :所有key使用LRU算法淘汰;
  • volatile-lfu :设置了过期时间的key使用LFU算法淘汰;
  • allkeys-lfu :所有key使用LFU算法淘汰;
  • volatile-random :设置了过期时间的key使用随机淘汰;
  • allkeys-random :所有key使用随机淘汰;
  • volatile-ttl :设置了过期时间的key根据过期时间淘汰,越早过期越早淘汰;
  • noeviction :默认策略,当内存达到设置的最大值时,所有申请内存的操作都会报错(如set,lpush等),只读操作如get命令可以正常执行;

在缓存的内存淘汰策略中有FIFO、LRU、LFU三种常用算法,其中LRU和LFU是Redis在使用的。

LRU算法

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

在这里插入图片描述
现在有数据 6、3、9、20、5。如果数据 20 和 3 被先后访问,它们都会从现有的链表位置移到 MRU 端,而链表中在它们之前的数据则相应地往后移一位。因为,LRU 算法选择删除数据时,都是从 LRU 端开始,所以把刚刚被访问的数据移到 MRU 端,就可以让它们尽可能地留在缓存中。
如果有一个新数据 15 要被写入缓存,但此时已经没有缓存空间了,也就是链表没有空余位置了,那么,LRU 算法做两件事:
1、数据15是刚被访问的,所以他会被放到MRU端
2、算法把LRU端的数据5从缓冲中删除

LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。

具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把lru 字段值最小的数据从缓存中淘汰出去。

Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:

CONFIG SET maxmemory-samples 100

当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。这样一来,Redis 缓存不用为所有的数据维护一个大链表,也不用在每次数据访问时都移动链表项,提升了缓存的性能。

但在LRU算法下,如果一个热点数据最近很少访问,而非热点数据近期访问了,就会误把热点数据淘汰而留下了非热点数据,因此在Redis4.x中新增了LFU算法。

LFU

LFU(Least Frequently Used)表示最不经常使用,它是根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

LFU 缓存策略是在 LRU 策略基础上,为每个数据增加了一个计数器,来统计这个数据的访问次数。当使用 LFU 策略筛选淘汰数据时,首先会根据数据的访问次数进行筛选,把访问次数最低的数据淘汰出缓存。如果两个数据的访问次数相同,LFU 策略再比较这两个数的访问时效性,把距离上一次访问时间更久的数据淘汰出缓存。

和那些被频繁访问的数据相比,扫描式单次查询的数据因为不会被再次访问,所以它们的访问次数不会再增加。因此,LFU 策略会优先把这些访问次数低的数据淘汰出缓存。

那么,LFU 策略具体又是如何实现的呢?

上面可以直到,redis 在实现 LRU 策略时使用了两个近似方法:

  • Redis 是用 RedisObject 结构来保存数据的,RedisObject 结构中设置了一个 lru 字段,用来记录数据的访问时间戳;
  • Redis 并没有为所有的数据维护一个全局的链表,而是通过随机采样方式,选取一定数量(例如 10 个)的数据放入候选集合,后续在候选集合中根据 lru 字段值的大小进行筛选。

在此基础上,Redis在实现LFU策略的时候,只是把原来24bit大小的lru字段,又进一步拆分成了两部分:

  1. ldt值:lru字段的前16bit,表示数据的访问时间戳
  2. counter值:lru字段的后8bit,表示数据的访问次数

总结以下:当LFU帅选数据时,Redis会在候选集合中,根据数据lru字段后的8bit选择访问次数最少的数据进行淘汰,当访问数据相同时,在跟进lru字段的前16bit值大小,选择访问时间最久远的数据进行淘汰。

总结

Redis过期删除策略是采用惰性删除和定期删除这两种方式组合进行的,惰性删除能够保证过期的数据我们在获取时一定获取不到,而定期删除设置合适的频率,则可以保证无效的数据及时得到释放,而不会一直占用内存数据。

但是我们说Redis是部署在物理机上的,内存不可能无限扩充的,当内存达到我们设定的界限后,便自动触发Redis内存淘汰策略,而具体的策略方式要根据实际业务情况进行选取。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806897.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Foxmail邮箱的使用方法和功能最全介绍

Foxmail邮箱是我们办公邮箱中比较有代表性和使用性的一款邮箱软件,今天笔者为大家介绍一下Foxmail邮箱的功能和使用方法。 1、首先我们从安装Foxmail邮箱开始 2、点击安装等待安装成功 3、双击打开 ,出现邮箱设置界面输入我们的账号密码,点击…

ESP32:往MicroPython集成PCNT以支持硬件正交编码器

背景 官方发布的1.23依然没有在ESP32中集成PCNT功能。考虑到硬件的PCNT模块可以提供4倍的编码精度(对比使用PIn IRQ),还能提供硬件去毛刺。 还是自己集成一下吧。 实际上Github上早在2022年1月的时候就已经有人建议了将PCNT加入正式版本的功…

家庭电脑私网如何访问阿里云服务器的指定端口

这里我们以在阿里云服务器上部署一个redis server 服务,对外开放6379端口为例子,其他端口类似。 1.获取当前电脑主机对应的公网IP, 可以https://tool.lu/ip/通过这个网站拿到。 2.阿里云服务器控制台设置防火墙,如下图所示,直接添…

【leetcode22-36】链表

160.相交链表 【等比例法】 class Solution:def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> Optional[ListNode]:if not headA or not headB:return NonepointA headApointB headBwhile pointA ! pointB:pointA pointA.next if pointA else headB …

五、身份与访问管理—身份管理和访问控制管理(CISSP)

目录 1.身份管理 1.1 目录技术 1.2 单点登录 1.2.1 Kerberos认证 1.2.2 SESAME认证 1.2.3 KryptoKnight认证 1.3 联合身份管理 1.3.1 SAML安全断言标记语言 1.3.2 标记语言 1.3.3 OpenID 1.3.4 OAuth 1.3.5 OIDC(OpenID Connect) 2.身份即服务(IDaaS) 2.1 AA…

【CS.SE】端午节特辑:Docker容器化技术详解与实战

端午节, 先祝愿大家端午安康,阖家幸福, 哈哈!这篇讲下Docker这一现代软件开发中不可或缺的技术。软件工程涉及软件开发的整个生命周期,包括需求分析、设计、构建、测试、部署和维护。Docker作为一种容器化技术,直接关联到软件部署…

基于springboot开发的Java MES制造执行系统源码,全套源码,一款数字化管理平台源码 云MES系统源码

基于springboot开发的Java MES制造执行系统源码,全套源码,一款数字化管理平台源码 云MES系统源码 MES系统源码相关技术: ​技术架构:springboot vue-element-plus-admin 开发语言:Java 开发工具:idea 前…

【西瓜书】6.支持向量机

目录: 1.分类问题SVM 1.1.线性可分 1.2.非线性可分——核函数 2.回归问题SVR 3.软间隔——松弛变量 3.1.分类问题:0/1损失函数、hinge损失、指数损失、对率损失 3.2.回归问题:不敏感损失函数、平方 4.正则化

机器学习——卷积神经网络

卷积神经网络CNN 多层感知机MLP的层数足够,理论上可以用其提取出二位特征,但是毕竟复杂,卷积神经网络就可以更合适的来提取高维的特征。 而卷积其实是一种运算 二维离散卷积的公式 可以看成g是一个图像的像素点,f是每个像素点对…

从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响

之前使用深度学习时一直对各种激活函数和权重初始化策略信手拈用,然而不能只知其表不知其里。若想深入理解为何选择某种激活函数和权重初始化方法卓有成效还是得回归本源,本文就从反向传播的计算过程来按图索骥。 为了更好地演示深度学习中的前向传播和…

Modbus主站和从站的区别

Modbus主站,从站 在工业自动化领域,Modbus是一种常用的通信协议,用于设备之间的数据交换。在Modbus通信中,主站和从站是两个关键的角色。了解主站和从站之间的区别对正确配置和管理Modbus网络至关重要。 Modbus主站的特点和功能 1.通信请求发…

文献阅读:Solving olympiad geometry without human demonstrations

文献阅读:Solving olympiad geometry without human demonstrations 1. 文章简介2. 方法介绍 1. Overview2. Symbolic deduce3. Language Model4. 联合使用 3. 实验考察 & 结论 1. 基础实验考察2. 结果分析3. 样例展示 4. 总结 & 思考 文献链接&#xff1a…

《web应用技术》第十次作业

将自己的项目改造为基于vue-cli脚手架的项目&#xff0c;页面有导航&#xff0c;学会使用router。 <el-aside width"200px" style"background-color: aliceblue;"> <el-menu :default-openeds"[1]" style"background-color:rgb(1…

关于Redis中哨兵(Sentinel)

Redis Sentinel 相关名词解释 名词 逻辑结构 物理结构 主节点 Redis 主服务 一个独立的 redis-server 进程 从节点 Redis 从服务 一个独立的 redis-server 进程 Redis 数据节点 主从节点 主节点和从节点的进程 哨兵节点 监控 Redis 数据节点的节点 一个独立的 re…

Cyber Weekly #10

赛博新闻 1、最强开源大模型面世&#xff1a;阿里发布Qwen2 6月7日凌晨&#xff0c;阿里巴巴通义千问团队发布了Qwen2系列开源模型。该系列模型包括5个尺寸的预训练和指令微调模型&#xff1a;Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B以及Qwen2-72B。据Qwen官方博客…

开发没有尽头,尽力既是完美

最近遇到了一些难题&#xff0c;开发系统总有一些地方没有考虑周全&#xff0c;偏偏用户使用的时候“完美复现”了这个隐藏的Bug...... 讲道理创业一年之久为了生存&#xff0c;我一直都有在做复盘&#xff0c;复盘的核心就是&#xff1a;如何提升营收、把控开发质量&#xff0…

嵌入式仪器模块:示波器模块和自动化测试软件

示波器模块 • 32 位分辨率 • 125 MSPS 采样率 • 支持单通道/双通道模块选择 • 低速模式可实现实时功率分布和整机功率检测 • 高速模式可实现信号分析和上电时序测量 应用场景 • 抓取并分析波形的周期、幅值、异常信号等指标 • 电源纹波与噪声分析 • 信号模板比…

vue28:组件化开发和根组件

简单写个点击事件 <template> <div class"app"><div class"box" click"fn"></div></div> </template><script> export default {//导出当前组件的配置项//里面可以提供 data methods computed wat…

SpringBoot: 启动流程和类装载

前面我们学过Spring定制了自己的可执行jar&#xff0c;将真正执行时需要的类和依赖放到BOOT-INF/classes、BOOT-INF/lib来&#xff0c;为了能够识别这些为止的源文件&#xff0c;Spring定制了自己类加载器&#xff0c;本节我们来讲解这个类加载器。本节涉及的内容主要包括: Sp…

web端中使用vue3 实现 移动端的上拉滚动加载功能

需要再web端实现上拉加载 纯属web端的东西 类似这样的功能效果 能够在web端实现滚动分页 overflow-y: scroll;首先给这个大盒子 一个 css 样式 支持滚动 再给固定高度 这个盒子里的内容就能立马滚动起来 给这个盒子一个ref 的属性 以及 有原生滚动事件 scroll const handle…