Tensorflow入门实战 P03-天气识别

news2024/11/24 14:01:53

目录

1、完整代码

2、运行结果

2.1 查看20张图片

2.2 程序运行

2.3 运行结果

3、小结

① 代码运行过程中有报错:

② 修改代码如下:

③ 分析原因:


  • 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

​​​​​本篇文章中,使用的天气数据集,还是之前pytorch里面用的数据集,只是更换了使用的语言为tensorflow。

1、完整代码

import tensorflow as tf
import os,  pathlib
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from tensorflow import keras
from keras import layers,models

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]        # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

# 导入数据
data_dir = "/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p03_weather/weather_photos"
data_dir = pathlib.Path(data_dir)
# 查看数据
image_count = len(list(data_dir.glob('*/*.jpg')))
print('图片总数为:', image_count)

roses = list(data_dir.glob('sunrise/*.jpg'))
print(roses[0])
im = Image.open(str(roses[0])).convert('RGB')
# im.show()   # 显示图片


# 数据预处理
# 1、加载数据
batch_size = 32
img_height = 180
img_width = 180
"""
    关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
# 训练数据
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
# 验证数据
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

# 我们可以通过class_names 输出数据集的标签。标签将按照字母对应于目录名称。
class_names = train_ds.class_names
print('标签名称:', class_names)   # ['cloudy', 'rain', 'shine', 'sunrise']


# 可视化数据
plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])

        plt.axis("off")

# 再次检查数据
for image_batch, labels_batch in train_ds:
    print(image_batch.shape)   # (32, 180, 180, 3)
    print(labels.shape)  # (32,)
    break

# 配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)   # 训练集
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)  # 验证集


# 构建卷积神经网络
num_classes = 4

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),

    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),  # 卷积层1,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),  # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  # 让神经元以一定的概率停止工作,防止过拟合,提高模型的泛化能力。

    layers.Flatten(),  # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),  # 全连接层,特征进一步提取
    layers.Dense(num_classes)  # 输出层,输出预期结果
])

# model.summary()  # 打印网络结构

# 编译
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])


# 训练模型
epochs = 10

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)


# 模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2、运行结果

2.1 查看20张图片

2.2 程序运行

2.3 运行结果

3、小结

① 代码运行过程中有报错:

AttributeError: module 'keras.layers' has no attribute 'experimental'

② 修改代码如下:

③ 分析原因:

出现上述问题是因为Keras的版本所导致的

新版本的keras中,keras.layers.experimental 已经被移除了。

方法1:更新keras版本

方法2:

import tensorflow as tf
from tensorflow import keras

# 使用tf.keras替代keras
if hasattr(keras.layers,"experimental"):
    keras.backend.clear_session()
    from tensorflow.keras import layers
else:
    from keras import layers

上述代码会检测你的Keras版本是否含有keras.layers.experimental 模块,如果有则清除当前session,然后导入tensorflow.keras.layers 模块。如果没有,则导入keras.layers 模块。通过这样的方式,就可以避免使用keras.layers.experimental 模块而引发的错误。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1806327.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

屏幕空间环境光遮蔽(SSAO)在AI绘画中的作用

引言: 随着人工智能技术的不断发展,AI绘画已经逐渐走进了人们的视野。作为一种新兴的艺术形式,AI绘画通过算法和模型来生成具有艺术感的图像。在这个过程中,屏幕空间环境光遮蔽(SSAO)技术发挥着重要作用。本…

英伟达的GPU(4)

更第四篇,上周有点私事,恢复更新 上次的文章 英伟达的GPU(3) (qq.com) 书接前文,我们上章说要更新GPU的内存机制,本次就讲点这个 先做个定义,我们说内存(显存),也分物理内存&#…

【目标跟踪网络训练 Market-1501 数据集】DeepSort 训练自己的跟踪网络模型

前言 Deepsort之所以可以大量避免IDSwitch,是因为Deepsort算法中特征提取网络可以将目标检测框中的特征提取出来并保存,在目标被遮挡后又从新出现后,利用前后的特征对比可以将遮挡的后又出现的目标和遮挡之前的追踪的目标重新找到&#xff0…

【BUG】已解决:ModuleNotFoundError: No module named ‘transformers‘

已解决:ModuleNotFoundError: No module named ‘transformers‘ 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班出身,就职于医疗科技公司…

360数字安全:2024年4月勒索软件流行态势分析报告

勒索软件传播至今,360 反勒索服务已累计接收到数万勒索软件感染求助。随着新型勒索软件的快速蔓延,企业数据泄露风险不断上升,勒索金额在数百万到近亿美元的勒索案件不断出现。勒索软件给企业和个人带来的影响范围越来越广,危害性…

OrangePi AIpro小试牛刀-目标检测(YoloV5s)

非常高兴参加本次香橙派AI Pro,香橙派联合华为昇腾打造的一款AI推理开发板评测活动,以前使用树莓派Raspberry Pi4B 8G版本,这次有幸使用国产嵌入式开发板。 一窥芳容 这款开发板搭载的芯片是和华为昇腾的Atlas 200I DK A2同款的处理器&#…

插卡式仪器模块:数字万用表模块(插卡式)

• 6 位数字表显示 • 24 位分辨率 • 250 KSPS 采样率 • 电源和数字 I/O 均采用隔离抗噪技术 • 电压、电流、电阻、电感、电容的高精度测量 • 二极管/三极管测试 通道122输入 阻抗 电压10 MΩHigh-Z, 10 MΩ电流10 Ω50 mΩ / 2 Ω / 2 KΩ输入范围电压 5 V0–60 V电流…

钉钉统一授权登录第三方网站

开发流程 配置回调域名。 进入已创建的应用详情页,在基础信息页面可以查看到应用的SuiteKey/SuiteSecret(第三方企业应用)或AppKey/AppSecret(企业内部应用)。 在应用详情页,然后单击钉钉登录与分享,添加应用回调的URL,以http或…

一文学习yolov5 实例分割:从训练到部署

一文学习yolov5 实例分割:从训练到部署 1.模型介绍1.1 YOLOv5结构1.2 YOLOv5 推理时间 2.构建数据集2.1 使用labelme标注数据集2.2 生成coco格式label2.3 coco格式转yolo格式 3.训练3.1 整理数据集3.2 修改配置文件3.3 执行代码进行训练 4.使用OpenCV进行c部署参考文…

安全专业的硬件远控方案 设备无网也能远程运维

在很多行业中,企业的运维工作不仅仅局限在可以联网的IT设备,不能连接外网的特种设备也需要专业的远程运维手段。 这种特种设备在能源、医疗等行业尤其常见,那么我们究竟如何通过远程控制,对这些无网设备实施远程运维,…

单灯双控开关原理

什么是单灯双控?顾名思义,指的是一个灯具可以通过两个不同的开关或控制器进行控制。 例如客厅的主灯可能会设置成单灯双控,一个开关位于门口,另一个位于房间内的另一侧,这样无论你是从门口进入还是从房间内出来&#x…

Java数据结构准备工作---常用类

文章目录 前言1.包装类1.1.包装类基本知识1.2.包装类的用途1.3.装箱和拆箱1.3.1.装箱:1.3.2.拆箱 1.4 包装类的缓存问题 2.时间处理类2.1.Date 时间类(java.util.Date)2.2.DateFormat 类和 SimpleDateFormat 类2.3.Calendar 日历类 3.其他常用类3.1.Math类3.2.Rando…

(论文翻译)Coordinate Attention for Efficient Mobile Network Design(坐标注意力 CVPR2021)

Coordinate Attention for Efficient Mobile Network Design(CVPR2021) 文章目录 Coordinate Attention for Efficient Mobile Network Design(CVPR2021)摘要1.引言2.相关工作3.方法:Coordinate Attention3.1.Revisit …

(二)JSX基础

什么是JSX 概念:JSX是JavaScript和XML(HTML)的缩写,表示在JS代码中编写HTML模版结构,它是React中编写UI模板的方式。 优势:1.HTML的声明式模版方法;2.JS的可编程能力 JSX的本质 JSX并不是标准…

RabbitMQ-topic exchange使用方法

RabbitMQ-默认读、写方式介绍 RabbitMQ-发布/订阅模式 RabbitMQ-直连交换机(direct)使用方法 目录 1、概述 2、topic交换机使用方法 2.1 适用场景 2.2 解决方案 3、代码实现 3.1 源代码实现 3.2 运行记录 4、小结 1、概述 topic 交换机是比直连交换机功能更加强大的…

强!推荐一款开源接口自动化测试平台:AutoMeter-API !

在当今软件开发的快速迭代中,接口自动化测试已成为确保代码质量和服务稳定性的关键步骤。 随着微服务架构和分布式系统的广泛应用,对接口自动化测试平台的需求也日益增长。 今天,我将为大家推荐一款强大的开源接口自动化测试平台: AutoMete…

备战 清华大学 上机编程考试-冲刺前50%,倒数第5天

T1:多项式求和 小K最近刚刚习得了一种非常酷炫的多项式求和技巧,可以对某几类特殊的多项式进行运算。非常不幸的是,小K发现老师在布置作业时抄错了数据,导致一道题并不能用刚学的方法来解,于是希望你能帮忙写一个程序…

SpringBoot+Vue体育馆管理系统(前后端分离)

技术栈 JavaSpringBootMavenMySQLMyBatisVueShiroElement-UI 角色对应功能 学生管理员 功能截图

计算机网络 期末复习(谢希仁版本)第4章

路由器:查找转发表,转发分组。 IP网的意义:当互联网上的主机进行通信时,就好像在一个网络上通信一样,看不见互连的各具体的网络异构细节。如果在这种覆盖全球的 IP 网的上层使用 TCP 协议,那么就…

144、二叉树的前序递归遍历

题解: 递归书写三要素: 1)确定递归函数的参数和返回值。要确定每次递归所要用到的参数以及需要返回的值 2)确定终止条件。操作系统也是用栈的方式实现递归,那么如果不写终止条件或者终止条件写的不对,都…