OpenCV学习(4.7) Canndy边缘检测

news2025/1/10 14:01:35

1.目标

在本章中,我们将了解

  • Canny 边缘检测的概念
  • OpenCV 的功能: cv.Canny()

Canny边缘检测是一种经典的边缘检测算法,由John F. Canny在1986年提出。Canny算法的目标是找到图像中真正的边缘,同时尽可能地抑制噪声。Canny算法包括以下几个步骤:

  1. 高斯模糊:使用高斯滤波器对图像进行平滑处理,以减少噪声的影响。

  2. 计算梯度:使用Sobel算子或其他差分算子计算图像的梯度,得到梯度的幅度和方向。

  3. 非极大值抑制:在梯度方向上,保留局部梯度最大值点,从而得到梯度幅值图像的边缘候选点。

  4. 双阈值处理:设置两个阈值,一个较低的阈值和一个较高的阈值。对梯度幅值图像进行阈值处理,将梯度值大于较高阈值的点作为强边缘,将梯度值介于两个阈值之间的点作为弱边缘。

  5. 边缘跟踪:使用双阈值和边缘梯度方向,进行边缘跟踪,得到最终的边缘图像。

2.1  高斯模糊(去噪声)

一般而言,图像边缘意味着亮度的剧烈变化,可以通过图像的二阶导也就是梯度来衡量,不过再此之前需要清楚噪声,因为噪声的周围亮度也存在变化,会影响边缘检测效果。所以首先需要用滤波器来清除噪声,椒盐噪声用中值滤波,高斯噪声用高斯滤波。

2.2 计算梯度
  • 利用sobel算子算出中心点附近的分别沿 x轴和 y轴的差值

 

2.3 非极大值抑制 

非极大值抑制(Non-Maximum Suppression,NMS)是图像处理中的一种常用技术,特别是在边缘检测中。它的基本原理是在图像的每个像素点上,如果该点的像素值不是在其梯度方向上的最大值,那么这个点的像素值将被抑制或设置为0。这样可以保留图像中的边缘,因为边缘通常在梯度方向上具有局部最大值。

具体来说,对于图像中的每个像素点(x,y),我们首先计算该点的梯度方向。然后,我们沿着梯度方向在图像中滑动一个小的窗口(如3x3的窗口),并在窗口内找到梯度幅值的最大值。如果当前像素点的梯度幅值不是这个最大值,那么我们就将这个像素点的梯度幅值设置为0。

这个过程可以表示为:

  1. 计算图像 f(x,y) 在点(x,y) 的梯度方向 θ。
  2. 在梯度方向 θ 上,从点(x,y) 开始,滑动一个小的窗口(如3x3窗口)。
  3. 在这个窗口内,找到梯度幅值的最大值 M。
  4. 如果当前像素点的梯度幅值 f(x,y) 不等于 M,则将 f(x,y) 设置为0。

非极大值抑制的结果是一幅图像,其中保留了边缘,而噪声和其他非边缘区域被抑制。这个技术可以有效地突出图像中的边缘,并减少噪声的影响。

A 点位于边缘(垂直方向)。渐变方向与边缘垂直。 B 点和 C 点处于梯度方向。因此,用点 B 和 C 检查点 A,看它是否形成局部最大值。如果是这样,则考虑下一阶段,否则,它被抑制(归零)。简而言之,您得到的结果是具有“细边”的二进制图像。

2.4 双阈值处理

双阈值处理(Double Thresholding)是Canny边缘检测算法中的一个关键步骤,它用于确定哪些边缘是真正的边缘,哪些可能是由噪声引起的假边缘。这个步骤包括以下几个子步骤:

  1. 设置两个阈值:首先,需要选择两个阈值,通常用 T1​ 和 T2​ 表示,其中 T1​<T2​。这两个阈值用于区分强边缘和弱边缘。

  2. 边缘强度分类:对非极大值抑制后的图像进行阈值处理。将图像中的每个像素点的梯度幅值与两个阈值进行比较:

    • 如果梯度幅值大于或等于 T2​,则该点被认为是强边缘,并被标记为边缘点。
    • 如果梯度幅值介于 T1​ 和 T2​ 之间,则该点被认为是弱边缘,并被暂时保留。
    • 如果梯度幅值小于 T1​,则该点不是边缘,通常被忽略。
  3. 边缘连接:对于弱边缘,需要检查它们是否与强边缘相连。如果一个弱边缘点与某个强边缘点相邻(在梯度方向上),那么这个弱边缘点也被认为是边缘点。

  4. 结果边缘图:最终得到的边缘图包含所有的强边缘和通过连接得到的弱边缘。

双阈值处理的关键在于选择合适的阈值 T1​ 和 T2​。这两个阈值的选择会影响到边缘检测的准确性和鲁棒性。通常,T1​ 应该设置得比噪声水平略高,而 T2​ 应该设置得比 T1​ 高一些,以确保只有真正的边缘被保留。

双阈值处理有助于Canny算法在保持高检测率的同时,尽可能地减少错误检测。通过这种方式,算法能够区分真正的边缘和噪声,从而提供高质量的边缘检测结果。

边缘 A 高于 maxVal,因此被视为“确定边缘”。虽然边 C 低于 maxVal,但它连接到边 A,因此也被视为有效边,我们得到完整的曲线。但是边缘 B 虽然高于 minVal 并且与边缘 C 的区域相同,但它没有连接到任何“可靠边缘”,因此被丢弃。因此,我们必须相应地选择 minVal 和 maxVal 才能获得正确的结果。

在假设边是长线的情况下,该阶段也消除了小像素噪声。所以我们最终得到的是图像中的强边缘。

3. opencv的canny边缘检测

OpenCV 将以上所有内容放在单个函数中, cv.Canny() 。我们将看到如何使用它。第一个参数是我们的输入图像。第二个和第三个参数分别是我们的 minVal 和 maxVal。第三个参数是 aperture_size。它是用于查找图像渐变的 Sobel 内核的大小。默认情况下,它是 3.最后一个参数是 L2gradient,它指定用于查找梯度幅度的等式。如果它是 True,它使用上面提到的更准确的等式,否则它使用这个函数: $$ Edge_Gradient ; (G) = |G_x| + |G_y| $$ 默认情况下,它为 False。

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
edges = cv.Canny(img,100,200)
plt.subplot(121),plt.imshow(img,cmap = 'gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
plt.show()

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1803764.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在nodeJS 中实现langchain 的Agent (实验笔记)

在nodeJS 中实现langchain 的Agent 实验过程记录如下&#xff1a; 1 构建一个Agent &#xff0c;使用两个工具 Calculator和TavilySearchResults 2 Tavily Search的API key 的获取 之前一直找不到一个合适的搜索引擎&#xff0c;Google Search 被墙&#xff0c;bing Search …

Mysql学习(六)——函数

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 三、函数3.1 字符串函数3.2 数值函数3.3 日期函数3.4 流程函数 三、函数 函数是指一段可以直接被另一段程序调用的程序或代码。 3.1 字符串函数 MySQL中内置了很…

Linux(Rocky)下 如何输入中文(切换中文输入法)教程

RockyLinux如何输入中文&#xff08;切换中文输入法&#xff09; 注意 在字符画界面的Linux系统中 默认不具备中文输入法的功能 需要SSH或其他远程工具来实现 问题 可能大家有的时候安装了一个虚拟机之后 想切换中文输入法 但是一直找不到方法 下面将利用Rocky9.2作为演示…

MT76X8 RF定频使用方法

一、从下面网址下载QA软件包&#xff0c;然后在WIN系统下安装QA环境。https://download.csdn.net/download/zhouwu_linux/89408573?spm1001.2014.3001.5503 在WINDOWS 7系统下先安装WinPcap_4_1_3.exe。 二、硬件连接。 模块上电&#xff0c;PC机 的IP配置成为10.10.18.100&a…

验证码案例

目录 前言 一、Hutool工具介绍 1.1 Maven 1.2 介绍 1.3 实现类 二、验证码案例 2.1 需求 2.2 约定前后端交互接口 2.2.1 需求分析 2.2.2 接口定义 2.3 后端生成验证码 2.4 前端接收验证码图片 2.5 后端校验验证码 2.6 前端校验验证码 2.7 后端完整代码 前言…

App UI 风格,引领时尚

App UI 风格&#xff0c;引领时尚

[创业之路-114] :互联网时代下的扁平化管理趋势与面临的挑战

目录 前言&#xff1a;扁平化管理的时代背景 一、扁平化管理的定义 二、扁平化管理的特点 三、扁平化管理的实施 四、扁平化管理的优势 五、偏平化管理的缺点 六、扁平化管理面临的挑战 七、扁平化管理条件和配套措施 7.1 扁平化管理的条件 7.2 扁平化管理的配套措施…

车载诊断架构 - 引导诊断

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

老旧机子装linux——Xubuntu

目录 前言 正文 下载系统 ​编辑 制作系统盘&#xff1a; 安装界面 Xubuntu ​编辑 lubuntu 后语 前言 有两台电脑&#xff0c;一台装了Ubuntu22&#xff0c;一台装了debuntu。虽然debuntu界面与乌班图大体一样&#xff0c;但是编译器好像有点区别。由于机子为10年前的老…

C 语言实现在终端里输出二维码

Mac 环境安装二维码库 brew install qrencode安装过程报权限问题执行以下命令 sudo chown -R 用户名 /usr/local/include /usr/local/lib chmod uw /usr/local/include /usr/local/lib#include <stdio.h> #include <qrencode.h>void print_qr_code(QRcode *qrcode…

编译原理-语法分析(实验 C语言)

语法分析 1. 实验目的 编制一个递归下降分析程序&#xff0c;实现对词法分析程序所提供的单词序列的语法检查和结构分析 2. 实验要求 利用C语言编制递归下降分析程序&#xff0c;并对简单语言进行语法分析 2.1 待分析的简单语言的语法 用扩充的BNF表示如下&#xff1a; …

腾讯元宝APP上线,AIGC产品的未来何去何从?

目录 腾讯元宝APP上线&#xff0c;AIGC产品的未来何去何从&#xff1f; 一、大模型AIGC产品概览 二、使用体验分享 1. 百度大脑 2. 阿里巴巴的AliMe 3. 字节跳动的TikTok AI 4. 腾讯元宝APP 小结 三、独特优势和倾向选择 1. 字节豆包 2. 百度文心一言 3. 阿里通义千…

[stm32]——uc/OS-III多任务程序

目录 一、获取uC/OS-III源码 二、移植源代码 &#xff08;1&#xff09;建立工程文件 &#xff08;2&#xff09;移植uC/OS-III源码 &#xff08;3&#xff09;添加工程组件和头文件路径 &#xff08;4&#xff09;添加头文件路径 三、修改代码 总结 一、获取uC/OS-III源码 …

大龄职场人的春招机遇:技术岗位主导,高薪与挑战并存

随着6月毕业季的临近&#xff0c;大批年轻人即将涌入人才市场&#xff0c;为职场注入新鲜血液。然而&#xff0c;这也意味着一些职场人可能面临被“优化”的风险。近几年&#xff0c;职场环境呈现出明显的年轻化趋势&#xff0c;企业更倾向于招聘具有创新活力的青年人才&#x…

170.二叉树:平衡二叉树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr, right(nullptr) {}* Tree…

React + SpringBoot实现图片预览和视频在线播放,其中视频实现切片保存和分段播放

图片预览和视频在线播放 需求描述 实现播放视频的需求时&#xff0c;往往是前端直接加载一个mp4文件&#xff0c;这样做法在遇到视频文件较大时&#xff0c;容易造成卡顿&#xff0c;不能及时加载出来。我们可以将视频进行切片&#xff0c;然后分段加载。播放一点加载一点&am…

openGauss系数据库逻辑复制实现双写

本篇关于逻辑复制实现双写的案例&#xff0c;本来准备了3个环境&#xff0c;分别是306、501和505&#xff0c;奈何在5版本向3版本订阅的时候&#xff0c;出现了报错&#xff0c;但也将整个过程都记录下来吧。 环境准备 节点信息 MogDB# select version(); …

【Linux】进程间通信之匿名管道

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前正在学习c和算法 ✈️专栏&#xff1a;Linux &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章有啥瑕疵&#xff0c;希望大佬指点一二 如果文章对…

易飞销货单出货时审核库存检查

公司接到一客户因品种多而数量少&#xff0c;单一出货计划行比较多&#xff0c;而只上了生产ERP易飞&#xff0c;审核时经常会出现倒催货&#xff0c;提前做销售单&#xff0c;行数有时超30行以上&#xff0c;审核跳窗报错时也不方便查找&#xff0c;特写一外挂程序&#xff0c…

代码随想录算法训练营第36期DAY49

DAY49 139单词拆分 没有思路。 回溯法 回溯怎么做呢&#xff1a;拼接str&#xff0c;看能不能拼出来。注意每个单词能用多次&#xff0c;不是用了就没。 但是语法还是难写。 自己的思路不好&#xff0c;题解思路&#xff1a;枚举所有分割字符串&#xff0c;判断是否在字典…