【红黑树变色+旋转】

news2024/11/18 11:45:38

文章目录

  • 一. 红黑树规则
  • 二. 情况一叔叔存在且为红
  • 情况二.变色+旋旋

一. 红黑树规则

对于红黑树,进行变色+旋转处理,终究都是为了维持颜色+以下几条规则,只有颜色和规则维持住了,红黑树就维持住了最长路径的长度不超过最短路径的两倍。

规则:

  1. 根是黑的。
  2. 没有连续的红节点。
  3. 每条路径的黑色数量相等。

二. 情况一叔叔存在且为红

注意点:红黑树插入的节点都是红色的,因为在红黑树中动黑色节点是非常忌讳的,因为要维持每条路径黑色数量相等非常困难,所以插入的节点默认都是红色的。

当插入红色节点后:1.如果父亲为黑或者父亲不存在,结束,不需要任何处理。
2. 如果父亲存在且为红,由于插入节点为红,存在连续红节点,需要处理,可以肯定的是爷爷一定是黑,因为插入节点前就是一棵红黑树了,既然父亲和爷爷颜色确定,主要看叔叔。

1.叔叔存在且为红
在这里插入图片描述
在这里插入图片描述

情况二.变色+旋旋

叔叔存在且为黑或者叔叔不存在都需变色+旋转,关键分析是左单旋,右单旋,还是左右双旋,还是右左双旋只要旋转后,就平衡了,直接结束,不需要向上更新

1. 变色+单旋
在这里插入图片描述
对于叔叔存在且为黑或不存在这种情况,不可能是因为直接插入红色节点导致连续红这种情况直接发生的,因为这发生了,原本就不是红黑树,一定是由上述图一第一种情况处理更新上来导致的。
解决办法:curp->left, pg->left 左左右单旋g点+
p变黑,g变红。
同理:如果上述情况curp->right, pg->right,右右左单旋g点+p变黑,g变红

2.变色+双旋
在这里插入图片描述
对于这种情况:curp->right, pg->left,左右双旋,
将p左旋,g右旋,+ cur变黑+g变红。

同理:curp->left, pg->right, 右左双旋,将p右旋,g左旋,+cur变黑+g变红

总结单纯变色处理,需要不停向上更新至父亲不存在或者父亲为黑结束,旋转+变色处理完就平衡了直接结束。
一下是代码实现

bool Insert(const pair<K, V>& kv)
		{
			if (_root == nullptr)
			{
				_root = new Node(kv);
				_root->_col = BLACK;	//根为黑色
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_kv.first < kv.first)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_kv.first > kv.first)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(kv);
			if (parent->_kv.first < kv.first)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			cur->_parent = parent;
			//父亲存在且为红,连续红节点,处理(如果父亲不存在管你红黑就结束了,如果为黑也结束了)
			while (parent && parent->_col == RED)
			{
				Node* grandfather = parent->_parent;  //算出爷爷,根据父亲为爷爷的左右,确定叔叔
				if (parent == grandfather->_left)
				{
					Node* uncle = grandfather->_right;
					//情况一:叔叔存在且为红 变色处理
					if (uncle && uncle->_col == RED)
					{
						parent->_col = uncle->_col = BLACK;
						grandfather->_col = RED;
						//根节点保证为黑下面处理

						//继续往上处理
						cur = grandfather;
						parent = cur->_parent;
					}
					//情况二:叔叔不存在/叔叔存在且为黑
					else
					{
						//需要判别单旋还是左旋,确定cur的位置
						//旋转+变色
						if (cur == parent->_left)
						{
							//		g
							//	 p		u
							//c
							//左左右单旋
							RotateR(grandfather);
							parent->_col = BLACK;
							grandfather->_col = RED;
						}
						else
						{
							//		g
							//	p		u
							//	   c
							//左右双旋+变色
							RotateL(parent);
							RotateR(grandfather);
							cur->_col = BLACK;
							grandfather->_col = RED;
						}
						break;	//只要旋转结束就平衡了结束
					}
				}
				else
				{
					Node* uncle = grandfather->_left;
					//情况一:叔叔存在且为红 变色处理
					if (uncle && uncle->_col == RED)
					{
						parent->_col = uncle->_col = BLACK;
						grandfather->_col = RED;
						//根节点保证为黑下面处理

						//继续往上处理
						cur = grandfather;
						parent = cur->_parent;
					}
					//情况二:叔叔不存在/叔叔存在且为黑
					else
					{
						if (cur == parent->_right)
						{
							//		g
							//	u		p
							//				c
							RotateL(grandfather);
							parent->_col = BLACK;
							grandfather->_col = RED;
						}
						else
						{
							//		g
							//	u		p
							//		 c
							//右左双旋
							RotateR(parent);
							RotateL(grandfather);
							cur->_col = BLACK;
							grandfather->_col = RED;
						}
						//只要旋转完了,就平衡结束了
						break;
					}
				}
			}
			_root->_col = BLACK;	//变色没有处理根,无论怎么处理都保证根是黑的
			return true;
		}

		void RotateL(Node* parent)
		{
			++rotateSize;
			Node* subR = parent->_right;
			Node* subRL = subR->_left;
			parent->_right = subRL;
			if (subRL)
				subRL->_parent = parent;
			subR->_left = parent;
			Node* ppnode = parent->_parent;
			parent->_parent = subR;
			if (_root == parent)
			{
				_root = subR;
				subR->_parent = nullptr;
			}
			else
			{
				if (parent == ppnode->_left)
				{
					ppnode->_left = subR;
				}
				else
				{
					ppnode->_right = subR;
				}
				subR->_parent = ppnode;
			}
		}
		void RotateR(Node* parent)
		{
			++rotateSize;
			Node* subL = parent->_left;
			Node* subLR = subL->_right;
			parent->_left = subLR;
			if (subLR)
				subLR->_parent = parent;
			subL->_right = parent;
			Node* ppnode = parent->_parent;
			parent->_parent = subL;
			if (parent == _root)
			{
				_root = subL;
				subL->_parent = nullptr;
			}
			else
			{
				if (parent == ppnode->_left)
				{
					ppnode->_left = subL;
				}
				else
				{
					ppnode->_right = subL;
				}
				subL->_parent = ppnode;
			}
		}
		

无论怎么方式处理完都需要保证根是黑的,最后加上

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FastAPI给docs/配置自有域名的静态资源swagger-ui

如果只是要解决docs页面空白的问题&#xff0c;可先看我的这篇博客&#xff1a;FastAPI访问/docs接口文档显示空白、js/css无法加载_fastapi docs打不开-CSDN博客 以下内容适用于需要以自用域名访问swagger-ui的情况&#xff1a; 1. 准备好swagger-ui的链接&#xff0c;如&am…

mysql optimizer_switch : 查询优化器优化策略深入解析

码到三十五 &#xff1a; 个人主页 在 MySQL 数据库中&#xff0c;查询优化器是一个至关重要的组件&#xff0c;它负责确定执行 SQL 查询的最有效方法。为了提供DBA和开发者更多的灵活性和控制权&#xff0c;MySQL 引入了 optimizer_switch 系统变量。这个强大的工具允许用户开…

os和os.path模块

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 目录也称文件夹&#xff0c;用于分层保存文件。通过目录可以分门别类地存放文件。我们也可以通过目录快速找到想要的文件。在Python中&#xff0c;并…

领域驱动设计(DDD)深入探究

领域驱动设计&#xff08;DDD&#xff09;深入探究 一、DDD 简介1.1 历史和背景1.2 领域驱动设计的概念1.2 领域驱动设计的核心概念1. 领域&#xff08;Domain&#xff09;2. 子域&#xff08;Subdomain&#xff09;3. 限界上下文&#xff08;Bounded Context&#xff09;4. 实…

玩转微服务-GateWay

目录 一. 背景二. API网关1. 概念2. API网关定义3. API网关的四大职能4. API网关分类5. 开源API网关介绍6. 开源网关的选择 三. Spring Cloud Gateway1. 文档地址2. 三个核心概念3. 工作流程4. 运行原理4.1 路由原理4.2 RouteLocator 5. Predicate 断言6. 过滤器 Filter6.1. 过…

19、matlab信号预处理中的中值滤波(medfilt1()函数)和萨维茨基-戈雷滤波滤(sgolayfilt()函数)

1、中值滤波&#xff1a;medfilt1()函数 说明&#xff1a;一维中值滤波 1&#xff09;语法 语法1&#xff1a;y medfilt1(x) 将输入向量x应用3阶一维中值滤波器。 语法2&#xff1a;y medfilt1(x,n) 将一个n阶一维中值滤波器应用于x。 语法3&#xff1a;y medfilt1(x,n…

片机+ISD1760智能家用语音唤醒系统设计

在节奏过快的生活中,人们承受的精神和心理压力十分巨大,这就使得现代人都希望在当代繁忙而枯燥的工作和学习中能身心愉悦的生活。随着信息化发展水平的逐步提高,智能化系统越来越受到人们的重视。市场上普遍的闹钟只是一种到了人们设定的时间就被令人烦躁的声音而吵醒的机械化…

通过Excel,生成sql,将A表数据插入B表

文章目录 投机取巧的方式,进行表数据初始化通过navicat搜索A表数据,然后复制进excel中通过excel的函数方式,将该批量数据自动生成插入B表的sql语句然后一次性拷贝生成的sql语句,放进navicat中一次执行,直接完成数据初始化

安全风险 - 组件导出风险

在安全审查中关于组件导出风险是一种常见问题&#xff0c;不同组件都有可能遇到这种问题&#xff0c;而且从一定角度来看的话&#xff0c;如果涉及到三方业务&#xff0c;基本处于无法解决的场景&#xff0c;所以我们需要说明为何无法避免这种风险 组件导出风险能不能规避&…

python的最小二乘法(OLS)函数

1、作用 pandas提供了一些很方便的功能&#xff0c;比如最小二乘法(OLS)&#xff0c;可以用来计算回归方程式的各个参数。 2、Python导出的OLS模型的结果 下面是如何解读Python导出的OLS模型的结果。 1. 回归系数&#xff1a; 代表每个自变量对因变量的影响程度&#xff0c…

文本审核纠错

探索高效文本审查利器&#xff1a;Word Checker-CSDN博客 GitHub - shibing624/pycorrector: pycorrector is a toolkit for text error correction. 文本纠错&#xff0c;实现了Kenlm&#xff0c;T5&#xff0c;MacBERT&#xff0c;ChatGLM3&#xff0c;LLaMA等模型应用在纠错…

Facebook与AI:探索人工智能在社交平台上的应用

随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;社交媒体平台正利用这些先进技术为用户提供更为个性化和高效的体验。作为全球最大的社交媒体平台之一&#xff0c;Facebook在AI应用领域的探索和实践尤为引人注目。本文将深入探讨Facebook如何在其平台上应用…

jupyter notebook使用conda环境

pycharm中安装过可以使用的库在jupyter notebook中导入不进来 1 检查pycharm中安装的库的位置 2 检查jupyter notebook中安装的库的位置 3 查看jupyter notebook内核名字 可以看到jupyter notebook中内核名字叫ipykernel 4 安装ipykernel 在pycharm的terminal中 pip instal…

【Go语言精进之路】构建高效Go程序:掌握变量、常量声明法则与iota在枚举中的奥秘

&#x1f525; 个人主页&#xff1a;空白诗 文章目录 引言一、变量1.1 基础知识1.2 包级变量的声明形式深入解析&#x1f4cc; 声明并同时显式初始化&#x1f4cc; 声明但延迟初始化&#x1f4cc; 声明聚类与就近原则 1.3 局部变量的声明形式深入探讨&#x1f4cc; 延迟初始化的…

深度学习每周学习总结P10(车牌识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 数据链接 提取码&#xff1a;ppv1 –来自百度网盘超级会员V5的分享 目录 0. 总结1. 数据导入、查看数据分类&#xff0c;自定义transform…

米尔NXP i.MX 93开发板的Qt开发指南

1. 概述 Qt 是一个跨平台的图形应用开发框架&#xff0c;被应用在不同尺寸设备和平台上&#xff0c;同时提供不同版权版本供用户选择。米尔 NXP i.MX 93 开发板&#xff08;MYD-LMX9X开发板&#xff09;使用 Qt6.5 版本进行应用开发。在 Qt 应用开发中&#xff0c;推荐使用 Qt…

初级网络工程师之入门到入狱(一)

本文是我在学习过程中记录学习的点点滴滴&#xff0c;目的是为了学完之后巩固一下顺便也和大家分享一下&#xff0c;日后忘记了也可以方便快速的复习。 网络工程师从入门到入狱 前言一、交换机二、路由器三、DHCP&#xff08;动态主机配置协议&#xff09;四、路由器配置 DHCP自…

OpenAI发布GPT-4思维破解新策略,Ilya亦有贡献!

OpenAI正在研究如何破解GPT-4的思维&#xff0c;并公开了超级对齐团队的工作&#xff0c;Ilya Sutskever也在作者名单中。 论文地址&#xff1a;https://cdn.openai.com/papers/sparse-autoencoders.pdf 代码&#xff1a;https://github.com/openai/sparse_autoencoder 特征可…

【Qt秘籍】[009]-自定义槽函数/信号

自定义槽函数 在Qt中自定义槽函数是一个直接的过程&#xff0c;槽函数本质上是类的一个成员函数&#xff0c;它可以响应信号。所谓的自定义槽函数&#xff0c;实际上操作过程和定义普通的成员函数相似。以下是如何在Qt中定义一个自定义槽函数的步骤&#xff1a; 步骤 1: 定义槽…

贪吃蛇游戏的编程之旅:在Windows PyCharm中使用Python

在电脑游戏的发展史中&#xff0c;贪吃蛇游戏无疑是其中的经典之作。许多人对其简单而上瘾的游戏玩法念念不忘。对编程爱好者来说&#xff0c;重新编写一个贪吃蛇游戏不仅是对青春回忆的一种致敬&#xff0c;也是一个极佳的学习机会。本文将引导你在Windows系统的PyCharm环境下…