Llama模型家族之拒绝抽样(Rejection Sampling)(二)均匀分布简介

news2024/11/19 14:31:19

LlaMA 3 系列博客

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (一)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (二)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (五)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (六)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (七)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (八)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (九)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(一)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(二)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(三)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(四)

构建安全的GenAI/LLMs核心技术解密之大模型对抗攻击(五)

你好 GPT-4o!

大模型标记器之Tokenizer可视化(GPT-4o)

大模型标记器 Tokenizer之Byte Pair Encoding (BPE) 算法详解与示例

大模型标记器 Tokenizer之Byte Pair Encoding (BPE)源码分析

大模型之自注意力机制Self-Attention(一)

大模型之自注意力机制Self-Attention(二)

大模型之自注意力机制Self-Attention(三)

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (十一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之 Code Llama (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话(三)

大模型之深入理解Transformer位置编码(Positional Embedding)

大模型之深入理解Transformer Layer Normalization(一)

大模型之深入理解Transformer Layer Normalization(二)

大模型之深入理解Transformer Layer Normalization(三)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(一)初学者的起点

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(二)矩阵操作的演练

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(三)初始化一个嵌入层

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(四)预先计算 RoPE 频率

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(五)预先计算因果掩码

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(六)首次归一化:均方根归一化(RMSNorm)

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(七) 初始化多查询注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(八)旋转位置嵌入

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(九) 计算自注意力

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十) 残差连接及SwiGLU FFN

大模型之一步一步使用PyTorch编写Meta的Llama 3代码(十一)输出概率分布 及损失函数计算

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(一)加载简化分词器及设置参数

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(二)RoPE 及注意力机制

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(三) FeedForward 及 Residual Layers

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(四) 构建 Llama3 类模型本身

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(五)训练并测试你自己的 minLlama3

大模型之使用PyTorch编写Meta的Llama 3实际功能代码(六)加载已经训练好的miniLlama3模型

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (四)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (五)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (六)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (七)

Llama 3 模型家族构建安全可信赖企业级AI应用之使用 Llama Guard 保护大模型对话 (八)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(一)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(二)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(三)

Llama 3 模型家族构建安全可信赖企业级AI应用之 CyberSecEval 2:量化 LLM 安全和能力的基准(四)

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(一)Code Shield简介

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(二)防止 LLM 生成不安全代码

Llama 3 模型家族构建安全可信赖企业级AI应用之code shield(三)Code Shield代码示例

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(一) LLaMA-Factory简介

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(二) LLaMA-Factory训练方法及数据集

大模型之Ollama:在本地机器上释放大型语言模型的强大功能

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(三)通过Web UI微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(四)通过命令方式微调

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(五) 基于已训练好的模型进行推理

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(六)Llama 3 已训练的大模型合并LoRA权重参数

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(七) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(八) 使用 LoRA 微调 LLM 的实用技巧

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(九) 使用 LoRA 微调常见问题答疑

Llama模型家族之使用 Supervised Fine-Tuning(SFT)微调预训练Llama 3 语言模型(十) 使用 LoRA 微调常见问题答疑

Llama模型家族训练奖励模型Reward Model技术及代码实战(一)简介

Llama模型家族训练奖励模型Reward Model技术及代码实战(二)从用户反馈构建比较数据集

Llama模型家族训练奖励模型Reward Model技术及代码实战(三) 使用 TRL 训练奖励模型

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(一)RLHF简介

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(二)RLHF 与RAIF比较

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(三) RLAIF 的工作原理

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(四)RLAIF 优势

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(五)RLAIF 挑战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(六) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(七) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(八) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(九) RLAIF 代码实战

Llama模型家族之RLAIF 基于 AI 反馈的强化学习(十) RLAIF 代码实战

Llama模型家族之拒绝抽样(Rejection Sampling)(一)

Llama模型家族之拒绝抽样(Rejection Sampling)(二)

在这里插入图片描述

均匀分布(Uniform Distribution)

均匀分布在等长区间上的取值概率是相同的。

概率密度函数及概率分布图如下所示:
在这里插入图片描述
在这里插入图片描述

正态分布(Normal Distribution)

正态分布数学期望为 μ,标准差为 σ,记做 N (μ, σ²)。

数学期望为 0、标准差为 1 的正态分布称为标准正态分布。

正态分布曲线呈钟型,两边低,中间高,左右对称。

正态分布概率密度函数及分布图如下所示:
在这里插入图片描述

在这里插入图片描述
考虑一个 无法采样的目标分布函数。

在这里插入图片描述

这是一个一维目标函数,我们的任务是获取介于 -3 和 3 之间的样本。提议函数的一个选择是均匀分布函数。下面显示了它的函数形式,即 g(x)。

在这里插入图片描述

如果采用这个提议函数并将其与 目标函数一起绘制,那么它将看起来像这样:

在这里插入图片描述
如你所见,目前 建议函数并没有完全封装 目标函数。一旦 制定了纠正措施(或验收标准),这种封装的意义就会变得清晰起来。

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1799102.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode216组合总和3

题目描述 找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:只使用数字1到9。每个数字 最多使用一次。返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。 解析 递归加剪枝,搜索长度达…

中学生学人工智能系列:如何用AI学政治

经常有读者朋友给公众号《人工智能怎么学》留言咨询如何使用人工智能学习语文、数学、英语等科目。这些都是中学教师、中学生朋友及其家长们普遍关注的问题。仅仅使用留言回复的方式,不可能对这些问题做出具体和透彻的解答,因此本公众号近期将推出中学生…

临床应用的深度学习在视网膜疾病的诊断和转诊中的应用| 文献速递-视觉通用模型与疾病诊断

Title 题目 Clinically applicable deep learning for diagnosis and referral in retinal disease 临床应用的深度学习在视网膜疾病的诊断和转诊中的应用 01 文献速递介绍 诊断成像的数量和复杂性正在以比人类专家可用性更快的速度增加。人工智能在分类一些常见疾病的二…

swaggerHole:针对swaggerHub的公共API安全扫描工具

关于swaggerHole swaggerHole是一款针对swaggerHub的API安全扫描工具,该工具基于纯Python 3开发,可以帮助广大研究人员检索swaggerHub上公共API的相关敏感信息,整个任务过程均以自动化形式实现,且具备多线程特性和管道模式。 工具…

【go】windows环境设置goos

场景 本地环境:windows 生产环境:linux 现想在本地将go脚本编译为可执行二进制文件,转移至生产中进行运行测试。但go build不生效。 方案(修改GOOS) cmd打开命令行,执行go env查看本地go环境&#xff0c…

28、pxe自动装机

一、pxe 1.1、pxe自动装机 服务端和客户端 pxe c/s模式:允许客户端通过网络从远程服务器(服务端)下载引导镜像,加装安装文件,实现自动化安装操作系统。 无人值守:无人值守,就是安装选项不需…

华为设备动态路由OSPF(单区域+多区域)实验

动态路由OSPF的配置 OSPF分类两种情况:单区域 多区域路由 OSPF单区域路由配置 OSPF:开放最短路径优先的路由协议。属于大型动态路由协议,适用于中大型的园区网。 网络拓扑: 配置步骤: 1.完成基本配置(略&a…

停止一个正在运行的线程

暴力停止方法 stop 该方法是不安全的,已经过时的方法,在其方法描述上 This method is inherently unsafe,这个方法实际上是不安全的 package com.alibaba.fescar.core.protocol.test;public class TestThreadStop {public static void main(S…

ArcGIS JSAPI 学习教程 - ArcGIS Maps SDK for JavaScript - 框选显示高亮几何对象

ArcGIS JSAPI 学习教程 - ArcGIS Maps SDK for JavaScript - 框选显示高亮对象 核心代码完整代码:在线示例 在研究 ArcGIS JSAPI RenderNode 高亮(highlights)FBO 的时候,实现了一下框选高亮几何对象,这里分享一下。 …

springboot配置集成RedisTemplate和Redisson,使用分布式锁案例

文章要点 自定义配置属性类集成配置RedisTemplate集成配置分布式锁Redisson使用分布式锁简单实现超卖方案 1. 项目结构 2. 集成RedisTemplate和Redisson 添加依赖 依赖的版本与继承的spring-boot-starter-parent工程相对应&#xff0c;可写可不写 <!--spring data redis…

【SpringBoot + Vue 尚庭公寓实战】租期管理接口实现(四)

【SpringBoot Vue 尚庭公寓实战】租期管理接口实现&#xff08;四&#xff09; 文章目录 【SpringBoot Vue 尚庭公寓实战】租期管理接口实现&#xff08;四&#xff09;1、查询全部租期列表2、保存或更新租期信息3、根据ID删除租期 租期管理共有三个接口&#xff0c;分别是 保…

备份和恢复realme智能手机:综合指南

realme自2018年成立至今&#xff0c;一直秉持着“敢于超越”的品牌精神&#xff0c;专注于为全球年轻用户提供性能卓越、设计新颖的高品质手机。对于如何备份和恢复realme手机&#xff0c;本文将介绍多种不同的方法。 第1部分&#xff1a;使用Coolmuster Android Backup Mana…

Android Lottie 体积优化实践:从 6.4 MB 降到 530 KB

一、说明 产品提出需求&#xff1a;用户有 8 个等级&#xff0c;每个等级对应一个奖牌动画。 按照常用的实现方式&#xff1a; 设计提供 8 个 lottie 动画&#xff08;8 个 json 文件&#xff09;。研发将 json 文件打包进入 APK 中。根据不同等级播放指定的动画。 每一个 …

【动态规划-BM69 把数字翻译成字符串】

题目 BM69 把数字翻译成字符串 描述 有一种将字母编码成数字的方式&#xff1a;‘a’->1, ‘b->2’, … , ‘z->26’。 现在给一串数字&#xff0c;返回有多少种可能的译码结果 分析 特判一个‘0’的情况 后面可以用动态规划&#xff1a; dp[n]为考虑前n个字符时&…

一分钟了解香港的场外期权报价

香港的场外期权报价 在香港这个国际金融中心&#xff0c;场外期权交易是金融市场不可或缺的一部分。场外期权&#xff0c;作为一种非标准化的金融衍生品&#xff0c;为投资者提供了在特定时间以约定价格买入或卖出某种资产的机会。对于希望参与这一市场的投资者来说&#xff0…

LeetCode62不同路径

题目描述 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。问总共有多少条不同的路径&#xff1f; …

LeetCode 两数之和 + 三数之和

两数之和 简单题 思路&#xff1a;一个Map&#xff0c;key是数值&#xff0c;value是该数值对应的下标&#xff0c;遍历的时候判断一下当前数组下标对应的值在map里有没有可组合成target的&#xff08;具体体现为在map里找target-nums【i】)&#xff0c;如果有&#xff0c;直接…

STL中stack和queue模拟实现+容器适配器

目录 容器适配器 STL标准库中stack和queue的底层结构 deque的简单介绍 deque的缺陷 为什么选择deque作为stack和queue的底层默认容器 stack的模拟实现 queue的模拟实现 容器适配器 适配器是一种设计模式&#xff08;设计模式是一套被反复使用的&#xff0c;多数人知晓…

2024北京消防展6.26召开-看消防安全企业如何升级赋能

2024北京消防展6.26召开-看消防安全企业如何升级赋能 随着社会的快速发展&#xff0c;消防安全已经成为企业安全生产的重要一环。作为消防领域的品质盛会&#xff0c;2024中国&#xff08;北京&#xff09;消防技术与设备展览会将于6月26-28 日在北京.首钢会展中心召开&#xf…

Django 传递额外参数给视图函数

本书1-7章样章及配套资源下载链接: https://pan.baidu.com/s/1OGmhHxEMf2ZdozkUnDkAkA?pwdnanc 源码、PPT课件、教学视频等&#xff0c;可以从前言给出的下载信息下载&#xff0c;大家可以评估一下。 在Django框架中&#xff0c;URLconf模块还支持一种传递额外参数给视图函…