文章目录
- 一、limit深分页为什么会变慢
- 二、优化方案
- 2.1 通过子查询优化(覆盖索引)
- 回顾B+树结构
- 覆盖索引
- 把条件转移到主键索引树
- 2.2 INNER JOIN 延迟关联
- 2.3 标签记录法(要求id是有序的)
- 2.4 使用between...and...
我们日常做分页需求时,一般会用limit实现,但是当偏移量特别大的时候,查询效率就变得低下。本文将分4个方案,讨论如何优化MySQL百万数据的深分页问题.
参考 实战!聊聊如何解决MySQL深分页问题
一、limit深分页为什么会变慢
表结构
CREATE TABLE account (
id int(11) NOT NULL AUTO_INCREMENT COMMENT '主键Id',
name varchar(255) DEFAULT NULL COMMENT '账户名',
balance int(11) DEFAULT NULL COMMENT '余额',
create_time datetime NOT NULL COMMENT '创建时间',
update_time datetime NOT NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
PRIMARY KEY (id),
KEY idx_name (name),
KEY idx_update_time (update_time) //索引
) ENGINE=InnoDB AUTO_INCREMENT=1570068 DEFAULT CHARSET=utf8 ROW_FORMAT=REDUNDANT COMMENT='账户表';
执行的深分页SQL为
select id,name,balance from account where update_time> '2020-09-19' limit 100000,10;
这个SQL的执行时间如下:
执行完需要0.742秒,深分页为什么会变慢呢?如果换成 limit 0,10
,只需要0.006秒哦
我们先来看下这个SQL的执行流程:
-
通过普通二级索引树idx_update_time,过滤update_time条件,找到满足条件的记录ID。
-
通过ID,回到主键索引树,找到满足记录的行,然后取出展示的列(回表)
-
扫描满足条件的100010行,然后扔掉前100000行,返回。
(每一条select语句都会从1遍历至当前位置,若跳转到第10000页,则会遍历100000条记录)
执行计划如下:
SQL变慢原因有两个:
- limit语句会先扫描offset+n行,然后再丢弃掉前offset行,返回后n行数据。也就是说
limit 100000,10
,就会扫描100010行,而limit 0,10
,只扫描10行。 limit 100000,10
扫描更多的行数,也意味着回表更多的次数。
二、优化方案
2.1 通过子查询优化(覆盖索引)
因为以上的SQL,回表了100010次,实际上,我们只需要10条数据,也就是我们只需要10次回表其实就够了。因此,我们可以通过减少回表次数来优化。
回顾B+树结构
如何减少回表次数呢?我们先来复习下B+树索引结构
InnoDB中,索引分主键索引(聚簇索引)和二级索引
- 主键索引,叶子节点存放的是整行数据
- 二级索引,叶子节点存放的是主键的值。
覆盖索引
覆盖索引(covering index ,或称为索引覆盖)即从非主键索引中就能查到的记录,而不需要查询主键索引中的记录,避免了回表的产生减少了树的搜索次数,显著提升性能。
如何确定数据库成功使用了覆盖索引呢? —— 当发起一个索引覆盖查询时,在explain的extra列可以看到using index的信息
可以看到Extra中的Using index,表明我们成功使用了覆盖索引
把条件转移到主键索引树
如果我们把查询条件,转移回到主键索引树,那就不就可以减少回表次数啦。转移到主键索引树查询的话,查询条件得改为主键id
了,之前SQL的update_time
这些条件咋办呢?抽到子查询那里嘛~
子查询那里怎么抽的呢?因为二级索引叶子节点是有主键ID的,所以我们直接根据update_time
来查主键ID即可,同时我们把 limit 100000
的条件,也转移到子查询,完整SQL如下:
select id,name,balance FROM account where id >= (select a.id from account a where a.update_time >= '2020-09-19' limit 100000, 1) LIMIT 10; -- (可以加下时间条件到外面的主查询)
查询效果一样的,执行时间只需要0.038秒! 0.742秒 ——> 0.038秒
我们来看下执行计划
由执行计划得知,子查询 table a查询是用到了idx_update_time
索引。首先在索引上拿到了聚集索引的主键ID,省去了回表操作,然后第二查询直接根据第一个查询的ID往后再去查10个就可以了!
所谓的覆盖索引就是从普通索引树中就能查到的想要数据,而不需要通过回表从主键索引中查询其他列,能够显著提升性能。
因此,这个方案是可以的~
2.2 INNER JOIN 延迟关联
延迟关联的优化思路,跟子查询的优化思路其实是一样的:都是把条件转移到主键索引树,然后减少回表。不同点是,延迟关联使用了inner join代替子查询。
优化后的SQL如下:
SELECT acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.update_time >= '2020-09-19' ORDER BY a.update_time LIMIT 100000, 10) AS acct2 on acct1.id= acct2.id;
查询效果也是杠杆的,只需要0.034秒
执行计划如下:
查询思路就是,先通过idx_update_time
二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。
2.3 标签记录法(要求id是有序的)
limit 深分页问题的本质原因就是:偏移量(offset)越大,mysql就会扫描越多的行,然后再抛弃掉。这样就导致查询性能的下降。
其实我们可以采用标签记录法,就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。
select id,name,balance from account limit 1000000,10;
假设上一次记录到100000,则SQL可以优化为:
select id,name,balance FROM account where id > 100000 order by id limit 10;
这样的话,后面无论翻多少页,性能都会不错的,因为命中了id
索引。但是你,这种方式有局限性:要求id是连续的、并且有序。
在有序的条件下,也可以使用比如创建时间等其他字段来代替主键id,但是前提是这个字段是建立了索引的。
id不是连续,我们可以通过order by
让它连续
总之,使用条件过滤的方式来优化 limit 是有诸多限制的,一般还是推荐使用覆盖索引的方式来优化。
2.4 使用between…and…
很多时候,可以将limit
查询转换为已知位置的查询,这样MySQL通过范围扫描between...and
,就能获得到对应的结果。
select id,name,balance from account limit 1000000,10;
如果知道边界值为100000,100010后,就可以这样优化:
select id,name,balance FROM account where id between 100000 and 100010 order by id desc;