Transformer学习(4)

news2025/1/15 12:58:58

在这里插入图片描述
上篇文章完成了Transformer剩下组件的编写,因此本文就可以开始训练。
本文主要介绍训练时要做的一些事情,包括定义损失函数、学习率调整、优化器等。
下篇文章会探讨如何在多GPU上进行并行训练,加速训练过程。

数据集简介

从网上找到一份中英翻译wmt数据集,数据格式如下:

[
    ["english sentence", "中文语句"], 
    ["english sentence", "中文语句"]
]

其中训练、验证、测试集的样本数分别为:176943、25278、50556。
下载地址:https://download.csdn.net/download/yjw123456/88694140 (固定只需要5积分)(ps: 我觉得没必要,网上有现成的数据集,用不香吗)

import pandas as pd
def build_dataframe_from_json(
    json_path: str,
    source_tokenizer: spm.SentencePieceProcessor = None,
    target_tokenizer: spm.SentencePieceProcessor = None,
) -> pd.DataFrame:
    with open(json_path, 'r', encoding="utf-8") as f:
        data = json.data(f)

    df = pd.DataFrame(data, columns=["source", "target"])

    def _source_vectorize(text: str) -> list[str]:
        return source_tokenizer.EncodeAsIds(text, add_bos=True, add_eos=True)
    
    def _target_vectorize(text: str) -> list[str]:
        return target_tokenizer.EncodeAsIds(text, add_bos=True, add_eos=True)

    tqdm.pandas()

    if source_tokenizer:
        df["source_indices"] = df.source.progress_apply(lambda x: _source_vectorize(x))
    if target_tokenizer:
        df["target_indices"] = df.target.progress_apply(lambda x: _target_vectorize(x))

    return df

传入原文的目的是计算BLEU分数时方便一点,当然也可以对编码后的索引反向解码成原文。

剩下的事情是通过数据加载器来加载数据集,相关代码如下:

import os

assert os.path.exists(
    train_args.src_tokenizer_file
), "should first run train_tokenizer.py to train the tokenizer"

assert os.path.exists(
    train_args.tgt_tokenizer_path
), "should first run train_tokenizer.py to train the tokenizer"

source_tokenizer = spm.SentencePieceProgress(
    model_file = train_args.src_tokenizer_file
)

target_tokenizer = spm.SentencePieceProgress(
    model_file = train_args.tgt_tokenizer_path
)

if train_args.only_test:
    train_args.use_wandb = False

if train_args.cuda:
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
else:
    device = torch.device("cpu")

print(f"source tokenizer size: {source_tokenizer.vocab_size()}")
print(f"target tokenizer size: {target_tokenizer.vocab_size()}")

set_random_seed(12345)

train_dataframe_path = os.path.join(
    train_args.save_dir, train_args.dataframe_file.format("train")
)
test_dataframe_path = os.path.join(
    train_args.save_dir, train_args.dataframe_file.format("test")
)
valid_dataframe_path = os.path.join(
    train_args.save_dir, train_args.dataframe_file.format("dev")
)

if os.path.exists(train_dataframe_path) and train_args.use_dataframe_cache:
    train_df, test_df, valid_df = (
        pd.read_pickle(train_dataframe_path),
        pd.read_pickle(test_dataframe_path),
        pd.read_pickle(valid_dataframe_path),
    )
    print("Loads cached dataframes.")
else:
    print("Create new dataframes.")

    valid_df = build_dataframe_from_json(
        f"{train_args.dataset_path}/dev.json", source_tokenizer, target_tokenizer
    )
    print("Create valid dataframe")
    test_df = build_dataframe_from_json(
        f"{train_args.dataset_path}/test.json", source_tokenizer, target_tokenizer
    )
    print("Create test dataframe")
    train_df = build_dataframe_from_json(
        f"{train_args.dataset_path}/train.json", source_tokenizer, target_tokenizer
    )
    print("Create train dataframe")
    
    train_df.to_pickle(train_dataframe_path)
    test_df.to_pickle(test_dataframe_path)
    valid_df.to_pickle(valid_dataframe_path)

pad_idx = model_args.pad_idx

train_dataset = NMTDataset(train_df, pad_idx)
valid_dataset = NMTDataset(valid_df, pad_idx)
test_dataset = NMTDateset(test_df, pad_idx)

train_dataloader = DataLoader(
    train_dataset,
    shuffle=True,
    batch_size=train_args.batch_size,
    collate_fn=train_dataset.cllate_fn,
)
valid_dataloader = DataLoader(
    valid_dataset,
    shuffle=False,
    batch_size=train_args.batch_size,
    collate_fn=valid_dataset.collate_fn,
)
test_dataloader = DataLoader(
    test_dataset,
    batch_size=train_args.batch_size,
    collate_fn=test_dataset.collate_fn,
)

数据处理好之后我们就可以开始训练了。

模型训练

标签平滑

Transformer的训练过程中用到了标签平滑(label smoothing)技术,目的是防止模型训练时过于自信地预测标签,改善泛化能力不足的问题。
简单来说就是降低原来one-hot形式中目标类别(对应1,即100%)的概率,拿出来分给其他类别。
以下内容摘自参考8的论文,不感兴趣可以直接跳过。

在这里插入图片描述

因此需要一种机制让模型不那么自信,虽然与最大化训练标签的对数似然有点相违背,但这确实对模型进行正则化使其更具适应性。

在这里插入图片描述

在这里插入图片描述

这样,LSR可以看成是将单个交叉熵损失H ( q , p )替换为H ( q , p )和H ( u , p )的两个损失的加权和。在训练时,如果模型非常确信的预测出真实标签分布,即H ( q , p )接近0,但H ( u , p )会急剧增大,因此基于标签平滑,我们可以防止模型预测地太过自信。第二项损失惩罚了预测标签分布p 和先验分布u 之间的偏差,注意,这种偏差可以等价地通过KL散度来捕捉。为什么这么说?

在这里插入图片描述

而分布u 的熵H ( u ) 是固定的,所以H ( u , p ) 只有KL散度有关。 当u 是均匀分布时,H ( u , p ) 衡量了预测分布p 与均匀分布的不相似程度,这也可以通过负熵− H ( p ) 来衡量(但并非等价)。

PyTorch在1.10之后就支持标签平滑:

nn.CrossEntropyLoss(ignore_index = pad_idx, reduction="sum", label_smoothing=0.1)

通过传入ignore_index为pad index、reduction='sum’和设置label_smoothing值来使用。
但是光这还不够,当我们使用CrossEntropyLoss时,我们需要拉平模型的输出和标签标记索引,所以我们定义如下损失类来包装CrossEntropyLoss:

class LabelSmoothingLoss(nn.Module):
    def __init__(self, label_smoothing: float=0.0, pad_idx: int=0) -> None:
        super().__init__()
        self.loss_func = nn.CrossEntropyLoss(ignore_index=pad_idx, label_smoothing=label_smoothing)

    def forward(self, logits: Tensor, labels: Tensor) -> Tensor:
        vocab_size = logits.shape[-1]
        logits = logits.reshape(-1, vocab_size)
        labels = labels.reshape(-1).long()
        return self.loss_func(logits, labels)

注意,实际上本文用到的数据集使用标签平滑效果反而不好。因此训练过程中并未使用。

学习率&优化器

在这里插入图片描述

from torch.optim import Adam

optimizer = Adam(model.parameters(),
                 betas = (0.9, 0.98),
                 eps = 1e-9)

并使用warmup策略调整学习率:
在这里插入图片描述
使用固定步数warmup_steps \text{warmup_steps}warmup_steps先使学习率线性增长(预热),而后随着step_num \text{step_num}step_num的增加以step_num \text{step_num}step_num的平方根成比例逐渐减小学习率。???

我们可以封装Adam优化器,并支持预热和学习率衰减。

class WarmupScheduler(_LRSheduler):
    def __init__(
        self,
        optimizer,
        warmup_steps: int,
        d_model: int,
        factor: float = 1.0,
        last_epoch: int = -1,
        verbose: bool = False,
    ) -> None:

        """
        Args:
            optimizer(Optimizer): Wrapped optimizer.
            warmup_steps(int): warmup steps.
            d_model(int): dimension of embeddings.
            last_epoch(int, optional): the index of last epoch. Default to -1.
            verbose(bool, optional): if True, prints a message to stdout for each update. Default to False.
        """
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.num_parm_groups = len(optimizer.param_groups)
        self.factor = factor
        super().__init__(optimizer, last_epoch, verbose)

    def get_lr(self) -> list[float]:
        lr = (
            self.factor
            *self.d_model**-0.5
            *min(
                 self._step_count**-0.5, self._step_count * self.warmup_steps**-1.5
            )
        )
        return [lr] * self.num_parm_groups

这里通过继承LRScheduler来实现,并且通过factor参数控制学习率的大小,小数据集可以尝试设置成0.5。我们可以画出学习率变化的趋势图:
在这里插入图片描述
关注上图的橙线,可以看到,学习率确实是从0开始逐渐增加,直到4000步后,开始逐渐下降。

在这里插入图片描述
为什么这个公式可以达到这个效果?好像其中包含了一个IF-ELSE似的。为了直观的理解,我们把这个公式重写成:

在这里插入图片描述

这样是不是就大概能看出来了:当warmup_step=4000时,warmup_steps ** 1.5=252982.2128。当训练步数step_num小于热身步数时,函数内右项一直小于左项,但随着训练步数的增加而线性增加;当训练步数到达热身步数warmup_steps时,min函数内的两项相等;当训练步数大于热身步数,函数内左项小于右项,并且随着训练步数的增加而(非线性)减少;这样就实现了我们上图看到的效果。从公式还以看到一点,就是模型的嵌入大小d_model越大,或者warmup_steps越大,学习率的峰值就越小,而且warmup_steps越大,学习率开始增加的越缓慢。

训练分词器

正如上文所述,我们使用sentencepiece工具包进行分词,首先将中英文语句分别读入内存。

import json
def get_mt_pairs(data_dir: str, splits=["train", "dev", "test"]):
    english_sentences = []
    chinese_sentences = []

    """
    json content:
    [["english sentence", "中文语句"], ["english sentence", "中文语句"]]
    """

    for split in splits:
        with open(f"{data_dir}/{split}.json", "r", encoding="utf-8") as f:
            data = json.load(f)
            for pair in data:
                english_sentences.append(pair[0] + "\n")
                chinese_sentences.append(pair[1] + "\n")

    assert len(chinese_sentences) == len(english_sentences)

    print(f"the total number of sentences: {len(chinese_sentences)}")
    return chinese_sentences, english_sentences

接着定义一个训练函数,这里用多进程同时训练:

def train_tokenizer(
    source_corpus_path: str,
    target_corpus_path: str,
    source_vocab_size: int,
    target_vocab_size: int,

    source_character_converge: float = 1.0,
    target_character_converge: float = 0.9995,
) -> None:

    with ProcessPoolExecutor() as executor:
        futures = [
            executor.submit(
                train_sentencepiece_bpe,
                source_corpus_path,
                "model_storage/source",
                source_vocab_size,
                source_character_converge,
            ),
            executor.submit(
                train_sentencepiece_bpe,
                target_corpus_path,
                "model_storage/target",
                target_vocab_size,
                target_character_converage,
            ),
        ]

        for future in futures:
            future.result()
    sp = spm.SentencePieceProcessor()

    source_text = """
        Tesla is recalling nearly all 2 million of its cars on US roads to limit the use of its 
        Autopilot feature following a two-year probe by US safety regulators of roughly 1,000 crashes
        in which the feature was engaged. The limitations on Autopilot serve as a blow to Tesla's efforts
        to market its vehicles to buyers willing to pay extra to have their cars to do the driving for them.
    """

    sp.load("model_storage/source.model")
    print(sp.encode_as_pieces(source_text))
    ids = sp.encode_as_ids(source_text)
    print(ids)
    print(sp.decode_ids(ids))

    target_text = """
        新华社北京1月2日电(记者丁雅雯、李唐宁)2024年元旦假期,旅游消费十分火爆。旅游平台数据显示,旅游相关产品订单量大幅增长,“异地跨年”“南北互跨”成关键词。
        业内人士认为,元旦假期旅游“开门红”彰显消费潜力,预计2024年旅游消费有望保持上升势头。
    """

    sp.load("model_storage/target.model")
    print(sp.encode_as_pieces(target_text))
    ids = sp.encode_as_ids(target_text)
    print(ids)
    print(sp.decode_ids(ids))

最后执行训练代码:

if __name__ == "__main__":
    make_dirs(train_args.save_dir)

    chinese_sentences, english_sentences = get_mt_pairs(
        data_dir = train_args.dataset_path, splits=["train", "dev", "test"]
        
    )

    with open(f"{train_args.dataset_path}/corpus.ch", "w", encoding="utf-8") as f:
        f.writelines(chinese_sentences)

    with open(f"{train_args.dataset_path}/corpus.en", "w", encoding="utf-8") as f:
        f.writelines(english_sentences)

    train_tokenizer(
        f"{train_args.dataset_path}/corpus.en",
        f"{train_args.dataset_path}/corpus.ch",
        source_vocab_size=model_args.source_vocab_size,
        target_vocab_size=model_args.target_vocab_size,
    )

['▁Tesla', '▁is', '▁recalling', '▁nearly', '▁all', '▁2', '▁million', '▁of', '▁its', '▁cars', '▁on', '▁US', '▁roads', '▁to', '▁limit', '▁the', '▁use', '▁of', '▁its', '▁Aut', 'op', 'ilot', '▁feature', '▁following', '▁a', 
'▁two', '-', 'year', '▁probe', '▁by', '▁US', '▁safety', '▁regulators', '▁of', '▁roughly', '▁1,000', '▁crashes', '▁in', '▁which', '▁the', '▁feature', '▁was', '▁engaged', '.', '▁The', '▁limitations', '▁on', '▁Aut', 'op', 
'ilot', '▁serve', '▁as', '▁a', '▁blow', '▁to', '▁Tesla', '’', 's', '▁efforts', '▁to', '▁market', '▁its', '▁vehicles', '▁to', '▁buyers', '▁willing', '▁to', '▁pay', '▁extra', '▁to', '▁have', '▁their', '▁cars', '▁do', '▁the', '▁driving', '▁for', '▁them', '.']
[22941, 59, 20252, 2225, 255, 216, 1132, 34, 192, 5944, 81, 247, 6980, 31, 3086, 10, 894, 34, 192, 5296, 177, 31299, 6959, 2425, 6, 600, 31847, 2541, 22423, 144, 247, 3474, 4270, 34, 2665, 8980, 23659, 26, 257, 10, 6959, 219, 5037, 31843, 99, 10725, 81, 5296, 177, 31299, 3343, 98, 6, 6296, 31, 22941, 31849, 31827, 1369, 31, 404, 192, 6287, 31, 10106, 2207, 31, 1129, 2904, 31, 147, 193, 5944, 295, 10, 4253, 75, 437, 31843]
Tesla is recalling nearly all 2 million of its cars on US roads to limit the use of its Autopilot feature following a two-year probe by US safety regulators of roughly 1,000 crashes in which the feature was engaged. The limitations on Autopilot serve as a blow to Tesla’s efforts to market its vehicles to buyers willing to pay extra to have their cars do the driving for them.
['▁新', '华', '社', '北京', '1', '月', '2', '日', '电', '(', '记者', '丁', '雅', '雯', '、', '李', '唐', '宁', ')', '20', '24', '年', '元', '旦', '假期', ',', '旅游', '消费', '十分', '火', '爆', '。', '旅游', '平台', '
数据显示', ',', '旅游', '相关', '产品', '订单', '', '大幅增长', ',', '', '', '', '', '', '', '南北', '', '', '', '', '关键', '', '', '', '', '', '人士', '认为', ',', '', '', '假期', '旅 
游', '', '', '', '', '', '彰显', '消费', '潜力', ',', '预计', '20', '24', '', '旅游', '消费', '有望', '保持', '上升', '势头', '。']
[1460, 29568, 28980, 2200, 28770, 29048, 28779, 28930, 29275, 28786, 2539, 29953, 30003, 1, 28758, 30345, 30229, 30365, 28787, 10, 3137, 28747, 28934, 29697, 18645, 28723, 4054, 266, 651, 29672, 29541, 28724, 4054, 2269, 12883, 28723, 4054, 521, 640, 25619, 28937, 22184, 710, 29596, 28765, 29649, 28747, 28811, 28809, 9356, 29410, 29649, 28811, 28762, 318, 29859, 28724, 28722, 28825, 28922, 1196, 64, 28723, 28934, 29697, 18645, 4054, 28809, 28889, 29208, 30060, 28811, 9466, 266, 1899, 28723, 1321, 10, 3137, 28747, 4054, 266, 4485, 398, 543, 4315, 28724]
新华社北京12日电(记者丁雅 ⁇ 、李唐宁)2024年元旦假期,旅游消费十分火爆。旅游平台数据显示,旅游相关产品订单量大幅增长,“异地跨年”“南北互跨”成关键词。 业内人士认为,元旦假期旅游“开门红”彰显消费潜力,预计2024年旅游消费有望保持上升势头。

这里可以看到,它无法正确识别雯字,因为我们的语料库中没有,所以在一个充分大的语料上训练分词器是非常有必要的。但我们可以先忽略这个问题。整个训练过程只需要几分钟。每个分词器会生成两个文件,一个模型文件和一个词表文件。比如中文的词表.vocab文件内容如下:

<pad> 0
<unk> 0
<s> 0
</s> 0
—— -0
经济 -1
国家 -2
美国 -3
▁但 -4
一个 -5
20 -6
我们 -7
政府 -8
中国 -9
可能 -10
他们 -11
欧洲 -12
问题 -13
...

这样我们有了训练好的BPE分词器,常用的操作如下:

sp.load("model_storage/source.model") # 加载分词器
print(sp.encode_as_pieces(source_text)) # 对文本分词
ids = sp.encode_as_ids(source_text) # 分词并编码成ID序列
print(sp.decode_ids(ids)) # ID序列还原成文本

定义数据加载器

@dataclass
class Batch:
    source: Tensor
    target: Tensor
    labels: Tensor
    num_tokens: int
    src_text: str = None
    tgt_text: str = None

class NMTDataset(Dataset):
    """Dataset for translation"""

    def __init__(self, text_df: pd.DataFrame, pad_idx: int = 0) -> None:
        """
        Args:
            text_df(pd.DataFrame): a DataFrame which contains the processed source and target sentences
        """
        # sorted by target Length
        # text_df = text_df.iloc[text_df["target"].apply(len).sort_values().index]
        self.text_df = text_df

        self_padding_index = pad_idx

    def __getitem__(
        self, index:int
    ) -> Tuple[list[int], list[int], list[str], list[str]]:

        row = self.text_df.iloc[index]

        return (row.source_indices, row_target_indices, row.source, row.target)

    def collate_fn(
        self, batch:list[Tuple[list[int], list[int], list[str]]]
    ) -> Tuple[LongTensor, LongTensor, LongTensor]:
        source_indices = [x[0] for x in batch]
        target_indices = [x[1] for x in batch]
        source_text = [x[2] for x in batch]
        target_text = [x[3] for x in batch]

        source_indices = [torch.LongTensor(indices) for indices in source_indices]
        target_indices = [torch.LongTensor(indices) for indices in target_indices]

        # The <eos> was added before the <pad> token to ensure that the model can correctly the end of a sentence.
        source = pad_sequence(
            source_indices, padding_value=self.padding_index, batch_first=True
        )
        target = pad_sequence(
            target_indices, padding_value=self.padding_index, batch_first=True
        )
        labels = target[:, 1:]
        target = target[:, :-1]

        num_tokens = (labels != self.padding_index).data.sum()
        
        return Batch(source, target, labels, num_tokens, source_text, target_text)

    def __len__(self) -> int:
        return len(self.text_df)

首先定义数据集类,将数据转换成DataFrame操作比较方便,这里假设传入的内容已经经过分词器的向量化。
我们还需要自己实现collate_fn,把数据转换成我们需要的格式。
具体地,先将源和目标索引序列转换Tensor;然后按批次内最大长度进行填充,即每个批次最大长度是不同的。假设一个批大小为2的批次内数据为:

[[2, 12342, 123, 323, 3, 0, 0, 0],
 [2, 222, 23, 12, 123, 22, 22, 3]]

这里的2和3分别对应bos和eos的ID,0对应填充ID。可以看到eos id(3)是在pad id(0)之前,这样模型能正确区分句子的结束位置。

填充完之后就得到(batch_size, seq_len)形状的数据,这里seq_len是批次内最大长度。

其中source可以直接输入给编码器,但是解码器的输入以及预测的目标要注意。
举个例子,假设要翻译的一句话为:

['<bos>', '我', '喜', '欢', '打', '篮', '球', '。', '<eos>', '<pad>']

注意后面有一个填充标记,解码器的输入target会移除这句话的最后一个标记,这里是,得到:

target = ['<bos>', '我', '喜', '欢', '打', '篮', '球', '。', '<eos>']

我们要预测的标签labels会移除这句话的第一个标记,都是:

labels = ['我', '喜', '欢', '打', '篮', '球', '。', '<eos>', '<pad>']

即解码器在输入和编码器的编码后,要预测出’我’;(结合mask)在输入[,‘我’]之后要预测出’喜’;…;在输入[‘’, ‘我’, ‘喜’, ‘欢’, ‘打’, ‘篮’, ‘球’, ‘。’]之后要预测出句子结束标记。

有了这个类定义数据加载器就简单了:

DataLoader(
    dataset, # 数据集类的实例
    shuffle=True,
    batch_size=32,
    collate_fn=dataset.collate_fn,
)

定义训练函数

定义训练和评估函数:

def train(
    model: nn.Module,
    data_loader: DataLoader,
    criterion: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    device: torch.device,
    clip: float,
    scheduler: torch.optim.lr_scheduler._LRScheduler,
) -> float:

    model.train() # train mode
    total_loss = 0.0
    tqdm_iter = tqdm(data_loader)

    for source, target, labels, _ in tqdm_iter:
        source = source.to(device)
        target = target.to(device)
        labels = labels.to(device)

        logits = model(source, target)

        #loss calculation
        loss = criterion(logits, labels)
        loss.backward()

        if clip:
            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)

        optimizer.step()
        scheduler.step()

        optimizer.zero_grad()
        total_loss += loss.item()
        description = f" TRAIN loss={loss.item():.6f}, learning rate={scheduler.get_last_lr()[0]:.7f}"

        del loss
        tqdm_iter.set_description(description)

    # average training loss
    avg_loss = total_loss / len(data_loader)

    return avg_loss

@torch.no_grad()
def evaluate(
    model: nn.Module,
    data_loader: DataLoader,
    device: torch.device,
    criterion: torch.nn.Module,
) -> float:

    model.eval()
    total_loss = 0

    for source, target, labels, _ in tqdm(data_loader):
        source = source.to(device)
        target = target.to(device)
        labels = labels.to(device)

        # feed forward
        logits = model(source, target)
        #loss calculation
        loss = criterion
        total_loss += loss.item()
        del loss
    #average validation loss
    avg_loss = total_loss / len(data_loader)
    return avg_loss

贪心搜索

贪心搜索或者说贪心解码,就是每次在预测下一个标记时都选取概率最大的那个。贪心搜索比较好实现,但是我们需要支持批操作,因为我们想在每个训练epoch结束后在验证集上计算一次BLEU分数。

def _greedy_search(
    self,
    src: Tensor,
    src_mask: Tensor,
    max_gen_len: int,
    keep_attentions: bool
):
    memory = self.transformer.encode(src, src_mask)
    batch_size = src.shape[0]
    device = src.device

    # keep track of which sequences are already finished
    unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=device)

    decoder_inputs = torch.LongTensor(batch_size, 1).fill_(self.bos_idx).to(device)

    eos_idx_tensor = torch.tensor([self.eos_idx]).to(device)

    finished = False

    while True:
        tgt_mask = self.generate_subsequent_mask(decoder_inputs.size(1), device)

        logits = self.lm_head(
            self.transformer.decode(
                decoder_inputs,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=src_mask,
                keep_attentions=keep_attentions,
            )
        )
        next_tokens = torch.argmax(logits[:, -1, :], dim=-1)

        #finished sentences should have their next token be a pad token
        next_tokens = next_tokens * unfinished_sequences = self.pad_idx * (
            1 - unfinished_sequences
        )

        decoder_inputs = torch.cat([decoder_inputs, next_tokens[:, None]], dim=-1)

        # set sentence to finished if eos_idx was found
        unfinished_sequences = unfinished_sequences.mul(
            next_tokens.tile(eos_idx_tensor.shape[0], 1)
            .ne(eos_idx_tensor.unsqueeze(1))
            .prod(dim=0)
        )

        # all sentences have eos_idx
        if unfinished_sequences.max() == 0:
            finished = True

        if decoder_inputs.shape[-1] >= max_gen_len:
            finished = True
            
        if finished:
            break

        return decoder_inputs

开始训练

定义训练参数:

import os
from dataclasses import dataclass
from typing import Tuple

@dataclass
class TrainArgument:
    """
    Create a 'data' directory and store the dataset under it
    """
    dataset_path: str = f"{os.path.dirname(__file__)}/data/wmt"
    save_dir = f"{os.path.dirname(__file__)}/model_storage"

    src_tokenizer_file: str = f"{save_dir}/source.model"
    tgt_tokenizer_path: str = f"{save_dir}/target.model"
    model_save_path: str = f"{save_dir}/best_transformer.pt"

    dataframe_file: str = "dataframe.{}.pkl"
    use_dataframe_cache: bool = True
    cuda : bool = True
    num_epochs: int = 40
    batch_size: int = 32
    gradient_accumulation_steps: int = 1
    grad_clipping: int = 0 # 0 dont use grad clip
    betas: Tuple[float, float] = (0.9, 0.997)
    eps: float = 1e-6
    label_smoothing: float = 0
    warmup_steps: int = 6000
    warmup_factor: float = 0.5
    only_test: bool = False
    max_gen_len: int = 60
    use_wandb: bool = True
    patient: int = 5
    gpus = [1, 2, 3]
    seed = 12345
    calc_bleu_during_train: bool = True

@dataclass
class ModelArgument:
    d_model: int = 512 # dimension of embeddings
    n_heads: int = 8 # number of self attention heads
    num_encoder_layers: int = 6 # number of encoder layers
    num_decoder_layers: int = 6 # number of decoder layers
    d_ff: int = d_model * 4 # dimension of feed-forward network
    dropout: float = 0.1 # dropout ratio in the whole network
    max_position: int=(
        5000 # supported max length of the sequence in positional encoding
    )
    source_vocab_size: int = 32000
    target_vocab_size: int = 32000
    pad_idx: int = 0
    norm_first: bool = True

train_args = TrainArgument()
model_args = ModelArgument()

warmup_steps的设置和总训练步数有关,一般训练成总训练步数的5-10%。

train_args = TrainArgument()

if __name__ == "__main__":
    assert os.path.exists(
        train_args.src_tokenizer_path ###???
    ), "should first run train_tokenizer.py to train the tokenizer"
    assert os.path.exists(
        train_args.tgt_tokenizer_path
    ), "should first run train_tokenizer.py to train the tokenizer"
    source_tokenizer = BPETokenizer.load_model(train_args.src_tokenizer_path) ###???
    target_tokenizer = BPETokenizer.load_model(train_args.tgt_tokenizer_path)

    print(f"source tokenizer size: {source_tokenizer.vocab_size}")
    print(f"target tokenizer size: {target_tokenizer.vocab_size}")

    train_df = build_dataframe_from_csv(train_args.dataset_csv.format("train"))
    valid_df = build_dataframe_from_csv(train_args.dataset_csv.format("dev"))
    test_df = build_dataframe_from_csv(train_args.dataset_csv.format("test"))

    train_dataset = NMTDataset(train_df, source_tokenizer, target_tokenizer)
    valid_dataset = NMTDataset(valid_df, source_tokenizer, target_tokenizer)
    test_dataset = NMTDataset(test_df, source_tokenizer, target_tokenizer)

    train_dataloader = DataLoader(
        train_dataset,
        batch_size=train_args.batch_size,
        shuffle=True,
        collate_fn=train_dataset.collate_fn,
    )

    valid_dataloader = DataLoader(
    valid_dataset,
    batch_size=train_args.batch_size,
    collate_fn=valid_dataset.collate_fn,
    )

    test_dataloader = DataLoader(
        test_dataset,
        batch_size=train_args.batch_size,
        collate_fn=test_dataset.collate_fn,
    )
    if train_args.cuda:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    else:
        device = torch.device("cpu")

    model_args = ModelArgument()
    pad_idx = target_tokenizer.pad_idx

    model_args.pad_idx = pad_idx
    model_args.source_vocab_size = source_tokenizer.vocab_size
    model_args.target_vocab_size = target_tokenizer.vocab_size

    model = Transformer(**asdict(model_args))

    print(model)
    print(f"The model has {count_parameters(model)} trainable parameters")

    model.to(device)

    if train_args.use_wandb:
        import wandb
        # start a new wandb run to track this script
        wandb.init(
            # set the wandb project where this run will be logged
            project="transfomer",
            config={
                "architecture": "Transformer",
                "dataset": "en-cn",
                "epochs": train_args.num_epochs,
            },
        )
    train_criterion = LabelSmoothingLoss(train_args.label_smoothing, pad_idx)
    # no label smoothing for validation
    valid_criterion = LabelSmoothingLoss(0, pad_idx)

    optimizer = torch.optim.Adam(
        model.parameters(), betas=train_args.betas, eps=train_args.eps
    )
    beta_loss = float("inf")

    print(f"begin train with argument: {train_args}")
    print(f"total train steps: {len(train_dataloader) * train_args.num_epochs}")

    if not train_args.inference:
        for epoch in range(train_args.num_epochs):
            train_loss = train(
                model,
                train_dataloader,
                train_criterion,
                optimizer,
                device,
                train_args.grad_clipping,
                scheduler,
            )
            valid_loss = evaluate(model, valid_dataloader, valid_criterion)
            print(
                f"end of epoch {epoch+1:3d} | train loss: {train_loss:.4f} valid loss {valid_loss:.4f}"
            )
            if train_args.use_wandb:
                wandb.log({"train_loss": train_loss, "valid_loss": valid_loss})
            
            if valid_loss < best_loss:
                best_loss = valid_loss
                print(f"Save model with best valid loss: {best_loss:.4f}")

                torch.save(model.state_dict(), train_args.model_save_path)

    model.load_state_dict(torch.load(train_args.model_save_path))
    test_loss = evaluate(model, test_dataloader, valid_criterion)

    #calculate bleu score
    bleu_score = calculate_bleu(
        model,
        source_tokenizer,
        target_tokenizer,
        test_df,
        train_args.max_gen_len,
        device,
    )
    print(f"TEST loss={test_loss:.4f} bleu score: {bleu_score}")

begin train with arguments: {‘d_model’: 512, ‘n_heads’: 8, ‘num_encoder_layers’: 6, ‘num_decoder_layers’: 6, ‘d_ff’: 2048, ‘dropout’: 0.1, ‘max_positions’: 5000, ‘source_vocab_size’: 32000, ‘target_vocab_size’: 32000, ‘pad_idx’: 0, ‘norm_first’: True, ‘dataset_path’: ‘nlp-in-action/transformers/transformer/data/wmt’, ‘src_tokenizer_file’: ‘nlp-in-action/transformers/transformer/model_storage/source.model’, ‘tgt_tokenizer_path’: ‘nlp-in-action/transformers/transformer/model_storage/target.model’, ‘model_save_path’: ‘nlp-in-action/transformers/transformer/model_storage/best_transformer.pt’, ‘dataframe_file’: ‘dataframe.{}.pkl’, ‘use_dataframe_cache’: True, ‘cuda’: True, ‘num_epochs’: 40, ‘batch_size’: 32, ‘gradient_accumulation_steps’: 1, ‘grad_clipping’: 0, ‘betas’: (0.9, 0.997), ‘eps’: 1e-06, ‘label_smoothing’: 0, ‘warmup_steps’: 8000, ‘warmup_factor’: 1.0, ‘only_test’: False, ‘max_gen_len’: 60, ‘use_wandb’: True, ‘patient’: 5, ‘calc_bleu_during_train’: True}
total train steps: 221200
TRAIN loss=6.496174, learning rate=0.0002630: 100%|██████████| 5530/5530 [09:39<00:00, 9.54it/s]
100%|██████████| 790/790 [00:25<00:00, 30.93it/s]
100%|██████████| 790/790 [09:33<00:00, 1.38it/s]
end of epoch 1 | train loss: 7.5265 | valid loss: 6.4111 | valid bleu_score 2.73
Save model with best bleu score :2.73
TRAIN loss=5.051253, learning rate=0.0002101: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.95it/s]
100%|██████████| 790/790 [08:29<00:00, 1.55it/s]
end of epoch 2 | train loss: 5.6566 | valid loss: 4.8901 | valid bleu_score 13.65
Save model with best bleu score :13.65
TRAIN loss=4.618272, learning rate=0.0001716: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.95it/s]
100%|██████████| 790/790 [07:16<00:00, 1.81it/s]
end of epoch 3 | train loss: 4.4314 | valid loss: 4.1444 | valid bleu_score 19.75
Save model with best bleu score :19.75
TRAIN loss=3.363390, learning rate=0.0001486: 100%|██████████| 5530/5530 [09:42<00:00, 9.50it/s]
100%|██████████| 790/790 [00:25<00:00, 30.94it/s]
100%|██████████| 790/790 [07:27<00:00, 1.77it/s]
end of epoch 4 | train loss: 3.7425 | valid loss: 3.8078 | valid bleu_score 22.49
Save model with best bleu score :22.49
TRAIN loss=2.784010, learning rate=0.0001329: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.92it/s]
100%|██████████| 790/790 [07:00<00:00, 1.88it/s]
end of epoch 5 | train loss: 3.3077 | valid loss: 3.6406 | valid bleu_score 23.61
Save model with best bleu score :23.61
TRAIN loss=2.984864, learning rate=0.0001213: 100%|██████████| 5530/5530 [09:42<00:00, 9.50it/s]
100%|██████████| 790/790 [00:25<00:00, 30.93it/s]
100%|██████████| 790/790 [07:01<00:00, 1.87it/s]
end of epoch 6 | train loss: 2.9858 | valid loss: 3.5483 | valid bleu_score 25.05
Save model with best bleu score :25.05
TRAIN loss=2.415353, learning rate=0.0001123: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.94it/s]
100%|██████████| 790/790 [06:59<00:00, 1.88it/s]
end of epoch 7 | train loss: 2.7246 | valid loss: 3.5058 | valid bleu_score 25.26
Save model with best bleu score :25.26
TRAIN loss=2.376031, learning rate=0.0001051: 100%|██████████| 5530/5530 [09:41<00:00, 9.50it/s]
100%|██████████| 790/790 [00:25<00:00, 30.94it/s]
100%|██████████| 790/790 [07:05<00:00, 1.86it/s]
end of epoch 8 | train loss: 2.5033 | valid loss: 3.5067 | valid bleu_score 25.43
Save model with best bleu score :25.43
TRAIN loss=2.036147, learning rate=0.0000990: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.97it/s]
100%|██████████| 790/790 [07:17<00:00, 1.81it/s]
end of epoch 9 | train loss: 2.3110 | valid loss: 3.5108 | valid bleu_score 25.49
Save model with best bleu score :25.49
TRAIN loss=2.295238, learning rate=0.0000940: 100%|██████████| 5530/5530 [09:40<00:00, 9.53it/s]
100%|██████████| 790/790 [00:25<00:00, 30.91it/s]
100%|██████████| 790/790 [07:11<00:00, 1.83it/s]
end of epoch 10 | train loss: 2.1405 | valid loss: 3.5340 | valid bleu_score 25.92
Save model with best bleu score :25.92
TRAIN loss=2.026224, learning rate=0.0000896: 100%|██████████| 5530/5530 [09:40<00:00, 9.52it/s]
100%|██████████| 790/790 [00:25<00:00, 30.94it/s]
100%|██████████| 790/790 [07:13<00:00, 1.82it/s]
end of epoch 11 | train loss: 1.9879 | valid loss: 3.5786 | valid bleu_score 25.53
TRAIN loss=1.975156, learning rate=0.0000858: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.94it/s]
100%|██████████| 790/790 [06:52<00:00, 1.91it/s]
end of epoch 12 | train loss: 1.8505 | valid loss: 3.6214 | valid bleu_score 25.57
TRAIN loss=1.730956, learning rate=0.0000824: 100%|██████████| 5530/5530 [09:41<00:00, 9.50it/s]
100%|██████████| 790/790 [00:25<00:00, 30.97it/s]
100%|██████████| 790/790 [07:10<00:00, 1.83it/s]
end of epoch 13 | train loss: 1.7260 | valid loss: 3.6728 | valid bleu_score 25.59
TRAIN loss=1.944140, learning rate=0.0000794: 100%|██████████| 5530/5530 [09:40<00:00, 9.52it/s]
100%|██████████| 790/790 [00:25<00:00, 30.93it/s]
100%|██████████| 790/790 [07:15<00:00, 1.82it/s]
end of epoch 14 | train loss: 1.6129 | valid loss: 3.7186 | valid bleu_score 25.60
TRAIN loss=1.699621, learning rate=0.0000767: 100%|██████████| 5530/5530 [09:41<00:00, 9.51it/s]
100%|██████████| 790/790 [00:25<00:00, 30.95it/s]
100%|██████████| 790/790 [07:22<00:00, 1.79it/s]
end of epoch 15 | train loss: 1.5094 | valid loss: 3.7738 | valid bleu_score 25.44
Stop from early stopping.
100%|██████████| 1580/1580 [00:51<00:00, 30.91it/s]
100%|██████████| 1580/1580 [14:28<00:00, 1.82it/s]
TEST loss=3.5372 bleu score: 25.85
wandb: Waiting for W&B process to finish… (success).
wandb:
wandb: Run history:
wandb: train_loss █▆▄▄▃▃▂▂▂▂▂▁▁▁▁
wandb: valid_bleu_score ▁▄▆▇▇██████████
wandb: valid_loss █▄▃▂▁▁▁▁▁▁▁▁▁▂▂
wandb:
wandb: Run summary:
wandb: train_loss 1.50937
wandb: valid_bleu_score 25.44111
wandb: valid_loss 3.77379

在单卡A10上训练一个epoch大概需要20分钟,实际训练了15个epoch,训练时长300分钟,即5个小时。时间有点长,不利于调参。
最终在测试集上的BLEU得分为25.85。
后文我们会探讨如何对整个耗时进行优化,通过但不限于多卡训练、KV Cache等方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1791183.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

区块链--Ubuntu上搭建以太坊私有链

1、搭建私链所需环境 操作系统&#xff1a;ubuntu16.04&#xff0c;开虚拟机的话要至少4G&#xff0c;否则会影响测试挖矿时的速度 软件&#xff1a; geth客户端 Mist和Ethereum Wallet&#xff1a;Releases ethereum/mist GitHub 2、安装geth客户端 sudo apt-get update …

《C++避坑神器·二十六》结构体报重定义错误问题和std::variant同时存储不同类型的值使用方式

1、结构体重定义错误问题&#xff1a; struct person {int age; }p;p是一个已经创建好的对象&#xff0c;相当于struct person p; 如果放在头文件中容易被多个文件包含报重定义错误 typedef struct person {int age; }person;person就是struct person&#xff0c;这时候并没有…

统一响应,自定义校验器,自定义异常,统一异常处理器

文章目录 1.基本准备&#xff08;构建一个SpringBoot模块&#xff09;1.在A_universal_solution模块下创建新的子模块unified-processing2.pom.xml引入基本依赖3.编写springboot启动类4.启动测试 2.统一响应处理1.首先定义一个响应枚举类 RespBeanEnum.java 每个枚举对象都有co…

全息之镜,未来的眼镜

全息之镜&#xff0c;作为未来眼镜的一种设想和展望&#xff0c;凭借其独特的全息技术&#xff0c;将在未来带来全新的视觉体验和应用场景。以下是关于全息之镜未来的详细分析和展望&#xff1a; 一、技术原理与特点 全息之镜利用全息技术&#xff0c;通过干涉、衍射和折射等…

Arthas调优工具使用

1&#xff0c;服务器端下载 curl -O https://arthas.aliyun.com/arthas-boot.jar 2&#xff0c;服务器端启动 java -jar arthas-boot.jar 选定要绑定的Java进程ID 3&#xff0c;本地idea安装Arthas idea 4&#xff0c;选定方法右键trace,生成命令 trace com.xxx.xxx.xxx.vouche…

6_5 test

Lucene 存储引擎 https://www.cnblogs.com/tech-lee/p/15225276.html\ 规范 问问题的技巧 提问者&#xff1a;要实现怎样的目标&#xff1f;自己计划是如何实现这个目标的&#xff1f;问题出现在哪个环节&#xff1f;自己为了解决这个问题&#xff0c;已经做了哪些尝试和工…

json和axion结合

目录 java中使用JSON对象 在pom.xml中导入依赖 使用 public static String toJSONString(Object object)把自定义对象变成JSON对象 json和axios综合案例 使用的过滤器 前端代码 响应和请求都是普通字符串 和 请求时普通字符串&#xff0c;响应是json字符串 响应的数据是…

【kubeflow文档】Kubeflow Training Operator

What is Training Operator Training Operator是一个Kubernetes原生项目&#xff0c;用于对使用各种ML框架&#xff08;如PyTorch、TensorFlow、XGBoost等&#xff09;创建的机器学习&#xff08;ML&#xff09;模型进行微调和可扩展的分布式训练。 用户可以将HuggingFace、Dee…

HarmonyOS App开发造轮子--自定义圆形图片

思路&#xff1a; 1、对比之前自己在其他程序开发中自定义组件的思路&#xff0c;首先寻找父组件Image和Component相关的Api&#xff0c;看看是否具备OnDraw方法。 2、了解Canvas相关Api操作&#xff0c;特别是涉及到位图的操作。 通过翻阅大量资料&#xff0c;发现了两个关…

【漏洞复现】Apache OFBiz 路径遍历导致RCE漏洞(CVE-2024-36104)

0x01 产品简介 Apache OFBiz是一个电子商务平台&#xff0c;用于构建大中型企业级、跨平台、跨数据库、跨应用服务器的多层、分布式电子商务类应用系统。是美国阿帕奇(Apache)基金会的一套企业资源计划(ERP)系统。该系统提供了一整套基于Java的Web应用程序组件和工具。 0x02 …

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第五周) - Transformer

Transformer 1. 注意力机制 在语言建模中&#xff0c;注意力(attention)是一个关键机制&#xff0c;用于在给定上下文中访问相关信息以进行预测。注意力机制允许模型根据输入上下文中的重要信息来加权关注不同的部分&#xff0c;并根据其重要性来决定对不同部分的关注程度。 …

C#操作MySQL从入门到精通(10)——对查询数据进行通配符过滤

前言 我们有时候需要查询数据,并且这个数据包含某个字符串,这时候我们再使用where就无法实现了,所以mysql中提供了一种模糊查询机制,通过Like关键字来实现,下面进行详细介绍: 本次查询的表中数据如下: 1、使用(%)通配符 %通配符的作用是,表示任意字符出现任意次数…

C++ list链表的使用和简单模拟实现

目录 前言 1. list的简介 2.list讲解和模拟实现 2.1 默认构造函数和push_back函数 2.2 迭代器实现 2.2.1 非const正向迭代器 2.2.2 const正向迭代器 2.2.3 反向迭代器 2.3 插入删除函数 2.3.1 insert和erase 2.3.2 push_back pop_back push_front pop_front 2.4 构…

QT+FFmpeg+Windows开发环境搭建(加薪点)

01、Windows 环境搭建 FFMPEG官网:http://ffmpeg.org/ 02、下载4.2.1版本源码 源码:https://ffmpeg.org/releases/ffmpeg-4.2.1.tar.bz2 03、下载4.2.1编译好的文件 下载已经编译好的FFMPEG)(迅雷下载很快) 网址:https://ffmpeg.zeranoe.com/builds/ 32位下载地址:(迅雷…

这家公司的39亿存款,无法收回了?

新闻提要 4日晚间&#xff0c;亿利洁能发布公告称&#xff0c;亿利财务公司对于公司存放在亿利财务公司的 39.06 亿元货币资金的用途主要是向亿利集团及其关联方发放贷款&#xff0c;近日公司获悉相关贷款已被划分为次级贷款&#xff08;不良贷款的一种&#xff09;&#xff0…

重大变化,2024软考!

根据官方发布的2024年度计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试安排&#xff0c;2024年软考上、下半年开考科目有着巨大变化&#xff0c;我为大家整理了相关信息&#xff0c;大家可以看看&#xff01; &#x1f3af;2024年上半年&#xff1a;5月25日&am…

特征工程及python实现

一、特征构建 概述 从原始数据中构建新的特征&#xff0c;一般需要根据业务分析&#xff0c;生成能更好体现业务特性的新特征&#xff0c;这些新特征要与目标关系紧密&#xff0c;能提升模型表现或更好地解释模型。 方法 时间周期&#xff1a;不同的时间切片长度&#xff0…

Linux信号大揭秘-从中断到控制进程,一步步掌握进程通信利器!

在Linux环境下&#xff0c;信号(Signal)是一种软件中断&#xff0c;用于通知进程发生了某些重要事件。无论你是在编写命令行工具、服务程序&#xff0c;还是开发图形界面应用&#xff0c;都离不开对信号的处理。本文将全面解析信号的工作原理&#xff0c;并通过实例代码让你彻底…

实用软件分享---简单菜谱 0.3版本 几千种美食(安卓)

专栏介绍:本专栏主要分享一些实用的软件(Po Jie版); 声明1:软件不保证时效性;只能保证在写本文时,该软件是可用的;不保证后续时间该软件能一直正常运行;不保证没有bug;如果软件不可用了,我知道后会第一时间在题目上注明(已失效)。介意者请勿订阅。 声明2:本专栏的…

重生之 SpringBoot3 入门保姆级学习(14、内容协商基础简介)

重生之 SpringBoot3 入门保姆级学习&#xff08;14、内容协商基础简介&#xff09; 3.3 内容协商3.3.1 基础简介3.3.2 演示效果 3.3 内容协商 3.3.1 基础简介 默认规则 基于请求头的内容协商&#xff08;默认开启&#xff09; 客户端向服务器发送请求&#xff0c;携带 HTTP 标…