Python 全栈体系【四阶】(五十六)

news2025/3/17 14:15:16

第五章 深度学习

十三、自然语言处理(NLP)

2. 传统NLP处理技术

2.1 中文分词

中文分词是一项重要的基本任务,分词直接影响对文本语义的理解。分词主要有基于规则的分词、基于统计的分词和混合分词。基于规则的分词主要是通过维护词典,在切分语句时,将语句的每个子字符串与词表中的词语进行匹配,找到则切分,找不到则不切分;基于统计的分词,主要是基于统计规则和语言模型,输出一个概率最大的分词序列(由于所需的知识尚未讲解,此处暂不讨论);混合分词就是各种分词方式混合使用,从而提高分词准确率。下面介绍基于规则的分词。

2.1.1 正向最大匹配法

正向最大匹配法(Forward Maximum Matching,FMM)是按照从前到后的顺序对语句进行切分,其步骤为:

  • 从左向右取待分汉语句的m个字作为匹配字段,m为词典中最长词的长度;
  • 查找词典进行匹配;
  • 若匹配成功,则将该字段作为一个词切分出去;
  • 若匹配不成功,则将该字段最后一个字去掉,剩下的字作为新匹配字段,进行再次匹配;
  • 重复上述过程,直到切分所有词为止。
2.1.2 逆向最大匹配法

逆向最大匹配法(Reverse Maximum Matching, RMM)基本原理与FMM基本相同,不同的是分词的方向与FMM相反。RMM是从待分词句子的末端开始,也就是从右向左开始匹配扫描,每次取末端m个字作为匹配字段,匹配失败,则去掉匹配字段前面的一个字,继续匹配。

2.1.3 双向最大匹配法

双向最大匹配法(Bi-directional Maximum Matching,Bi-MM)是将正向最大匹配法得到的分词结果和逆向最大匹配法得到的结果进行比较,然后按照最大匹配原则,选取词数切分最少的作为结果。双向最大匹配的规则是:

  • 如果正反向分词结果词数不同,则取分词数量少的那个;

  • 分词结果相同,没有歧义,返回任意一个;分词结果不同,返回其中单字数量较少的那个。

【示例1】正向最大匹配分词法

# 正向最大匹配分词示例
class MM(object):
    def __init__(self):
        self.window_size = 3

    def cut(self, text):
        result = [] # 分词结果
        start = 0 # 起始位置
        text_len = len(text) # 文本长度

        dic = ["吉林", "吉林市", "市长", "长春", "春药", "药店"]

        while text_len > start:
            for size in range(self.window_size + start, start, -1): # 取最大长度,逐步比较减小
                piece = text[start:size] # 切片
                if piece in dic: # 在字典中
                    result.append(piece) # 添加到列表
                    start += len(piece)
                    break
                else: # 没在字典中,什么都不做
                    if len(piece) == 1:
                        result.append(piece) # 单个字成词
                        start += len(piece)

        return result

if __name__ == "__main__":
    text = "吉林市长春药店"
    tk = MM() # 实例化对象
    result = tk.cut(text)
    print(result)

执行结果:

['吉林市', '长春', '药店']

【示例2】逆向最大匹配分词法

# 逆向最大匹配分词示例
class RMM(object):
    def __init__(self):
        self.window_size = 3

    def cut(self, text):
        result = [] # 分词结果
        start = len(text) # 起始位置
        text_len = len(text) # 文本长度

        dic = ["吉林", "吉林市", "市长", "长春", "春药", "药店"]

        while start > 0:
            for size in range(self.window_size, 0, -1):
                piece = text[start-size:start] # 切片
                if piece in dic: # 在字典中
                    result.append(piece) # 添加到列表
                    start -= len(piece)
                    break
                else: # 没在字典中
                    if len(piece) == 1:
                        result.append(piece) # 单个字成词
                        start -= len(piece)
                        break
        result.reverse()
        return result

if __name__ == "__main__":
    text = "吉林市长春药店"
    tk = RMM() # 实例化对象
    result = tk.cut(text)
    print(result)

执行结果:

['吉林市', '长春', '药店']

【示例3】Jieba库分词

Jieba是一款开源的、功能丰富、使用简单的中文分词工具库,它提供了三种分词模式:

  • 精确模式:试图将句子最精确地分词,适合文本分析
  • 全模式:把句子中所有可以成词的词语分割出来,速度快,但有重复词和歧义
  • 搜索引擎模式:在精确模式基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词

使用Jieba库之前,需要进行安装:

pip install jieba==0.42.1

分词示例代码如下:

# jieba分词示例
import jieba

text = "吉林市长春药店"

# 全模式
seg_list = jieba.cut(text, cut_all=True)
for word in seg_list:
    print(word, end="/")
print()

# 精确模式
seg_list = jieba.cut(text, cut_all=False)
for word in seg_list:
    print(word, end="/")
print()

# 搜索引擎模式
seg_list = jieba.cut_for_search(text)
for word in seg_list:
    print(word, end="/")
print()

执行结果:

吉林/吉林市/市长/长春/春药/药店/
吉林市/长春/药店/
吉林/吉林市/长春/药店/

【示例4】文本高频词汇提取

# 通过tf-idf提取高频词汇
import glob
import random
import jieba


# 读取文件内容
def get_content(path):
    with open(path, "r", encoding="gbk", errors="ignore") as f:
        content = ""
        for line in f.readlines():
            line = line.strip()
            content += line
        return content


# 统计词频,返回最高前10位词频列表
def get_tf(words, topk=10):
    tf_dict = {}

    for w in words:
        if w not in tf_dict.items():
            tf_dict[w] = tf_dict.get(w, 0) + 1  # 获取词频并加1

    # 倒序排列
    new_list = sorted(tf_dict.items(), key=lambda x: x[1], reverse=True)

    return new_list[:topk]


# 去除停用词
def get_stop_words(path):
    with open(path, encoding="utf8") as f:
        return [line.strip() for line in f.readlines()]


if __name__ == "__main__":
    # 样本文件
    fname = "d:\\NLP_DATA\\chap_3\\news\\C000008\\11.txt"
    # 读取文件内容
    corpus = get_content(fname)
    # 分词
    tmp_list = list(jieba.cut(corpus))
    # 去除停用词
    stop_words = get_stop_words("d:\\NLP_DATA\\chap_3\\stop_words.utf8")
    split_words = []
    for tmp in tmp_list:
        if tmp not in stop_words:
            split_words.append(tmp)

    # print("样本:\n", corpus)
    print("\n 分词结果: \n" + "/".join(split_words))

    # 统计高频词
    tf_list = get_tf(split_words)
    print("\n top10词 \n:", str(tf_list))

执行结果:

分词结果:
焦点/个股/苏宁/电器/002024/该股/早市/涨停/开盘/其后/获利盘/抛/压下/略有/回落/强大/买盘/推动/下该/股/已经/再次/封于/涨停/主力/资金/积极/拉升/意愿/相当/强烈/盘面/解析/技术/层面/早市/指数/小幅/探低/迅速/回升/中石化/强势/上扬/带动/指数/已经/成功/翻红/多头/实力/之强/令人/瞠目结舌/市场/高度/繁荣/情形/投资者/需谨慎/操作/必竟/持续/上攻/已经/消耗/大量/多头/动能/盘中/热点/来看/相比/周二/略有/退温/依然/看到/目前/热点/效应/外扩散/迹象/相当/明显/高度/活跌/板块/已经/前期/有色金属/金融/地产股/向外/扩大/军工/概念/航天航空/操作/思路/短线/依然/需/规避/一下/技术性/回调/风险/盘中/切记/不可/追高

top10词:
 [('已经', 4), ('早市', 2), ('涨停', 2), ('略有', 2), ('相当', 2), ('指数', 2), ('多头', 2), ('高度', 2), ('操作', 2), ('盘中', 2)]
2.2 词性标注
2.2.1 什么是词性标注

词性是词语的基本语法属性,通常也称为词类。词性标注是判定给定文本或语料中每个词语的词性。有很多词语在不同语境中表现为不同的词性,这就为词性标注带来很大的困难。另一方面,从整体上看,大多数词语,尤其是实词,一般只有一到两个词性,其中一个词性的使用频率远远大于另一个。

2.2.2 词性标注的原理

词性标注最主要方法同分词一样,将其作为一个序列生成问题来处理。使用序列模型,根据输入的文本,生成一个对应的词性序列。

2.2.3 词性标注规范

词性标注要有一定的标注规范,如将名词、形容词、动词表示为"n", “adj”, "v"等。中文领域尚无统一的标注标准,较为主流的有北大词性标注集和宾州词性标注集。以下是北大词性标注集部分词性表示:

在这里插入图片描述
在这里插入图片描述

2.2.4 Jieba库词性标注

Jieba库提供了词性标注功能,采用结合规则和统计的方式,具体为在词性标注的过程中,词典匹配和HMM共同作用。词性标注流程如下:

第一步:根据正则表达式判断文本是否为汉字;

第二步:如果判断为汉字,构建HMM模型计算最大概率,在词典中查找分出的词性,若在词典中未找到,则标记为"未知";

第三步:若不如何上面的正则表达式,则继续通过正则表达式进行判断,分别赋予"未知"、”数词“或"英文"。

【示例】Jieba库实现词性标注

import jieba.posseg as psg


def pos(text):
    results = psg.cut(text)
    for w, t in results:
        print("%s/%s" % (w, t), end=" ")
    print("")


text = "呼伦贝尔大草原"
pos(text)

text = "梅兰芳大剧院里星期六晚上有演出"
pos(text)

执行结果:

呼伦贝尔/nr 大/a 草原/n
梅兰芳/nr 大/a 剧院/n 里/f 星期六/t 晚上/t 有/v 演出/v
2.3 命名实体识别(NER)

命名实体识别(Named Entities Recognition,NER)也是自然语言处理的一个基础任务,是信息抽取、信息检索、机器翻译、问答系统等多种自然语言处理技术必不可少的组成部分。其目的是识别语料中人名、地名、组织机构名等命名实体,实体类型包括3大类(实体类、时间类和数字类)和7小类(人名、地名、组织机构名、时间、日期、货币和百分比)。中文命名实体识别主要有以下难点:

(1)各类命名实体的数量众多。

(2)命名实体的构成规律复杂。

(2)嵌套情况复杂。

(4)长度不确定。

命名实体识别方法有:

(1)基于规则的命名实体识别。规则加词典是早期命名实体识别中最行之有效的方式。其依赖手工规则的系统,结合命名实体库,对每条规则进行权重赋值,然后通过实体与规则的相符情况来进行类型判断。这种方式可移植性差、更新维护困难等问题。

(2)基于统计的命名实体识别。基于统计的命名实体识别方法有:隐马尔可夫模型、最大熵模型、条件随机场等。其主要思想是基于人工标注的语料,将命名实体识别任务作为序列标注问题来解决。基于统计的方法对语料库的依赖比较大,而可以用来建设和评估命名实体识别系统的大规模通用语料库又比较少,这是该方法的一大制约。

(3)基于深度学习的方法。利用深度学习模型,预测词(或字)是否为命名实体,并预测出起始、结束位置。

(4)混合方法。将前面介绍的方法混合使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1789812.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FreeRTOS学习笔记-基于stm32(7)任务状态查询与任务时间统计API函数

1、FreeRTOS任务相关API函数 函数描述uxTaskPriorityGet()查询某个任务的优先级vTaskPrioritySet()改变某个任务的任务优先级uxTaskGetSystemState()获取系统中任务状态vTaskGetInfo()获取某个任务信息xTaskGetApplicationTaskTag()获取某个任务的标签(Tag)值xTaskGetCurrentT…

Ktor库的高级用法:代理服务器与JSON处理

在现代网络编程中,Ktor是一个高性能且易于使用的框架,它提供了对异步编程、WebSockets、HTTP客户端和服务器等特性的原生支持。Ktor是使用Kotlin语言编写的,充分利用了Kotlin的协程特性来简化异步编程。本文将深入探讨Ktor库的高级用法&#…

数据误删?别怕!COS防误删和误删恢复攻略请查收

在云存储领域,数据的安全性始终是悬在头顶的达摩克利斯之剑。长期以来,腾讯云对象存储服务(COS)一直致力于数据安全的探索和实践,以保障数据的安全性和完整性。对象存储COS准备了一份“防误删”和“误删恢复”攻略给大…

Base64前端图片乱码转换

title: Base64码乱转换 date: 2024-06-01 20:30:28 tags: vue3 后端图片前端显示乱码 现象 后端传来一个图片,前端能够接收,但是console.log()后发现图片变成了乱码,但是检查后台又发现能够正常的收到了这张图片。 处理方法 笔者有尝试将…

SQL注入之updatexml报错注入(函数解释)

先解释一下updatexml参数的用法 updatexml():更新xml文档的函数 语法:updatexml(目标xml文档,xml路径,更新的内容) 第二个参数 xml路径 是可操作的地方,xml文档中路径是用 /xxx/xxx/xxx/…这种格式,如果我们写入其他…

OceanBase 内存研究(OceanBase 3.2.4.5)

内存结构 从官网的结构图可以看出,一台observer可使用的总内存(memory_limit)包括 系统内存(system_memory) 和 租户内存(sys租户与普通租户) 系统内存 系统内存system_memory 属于 observer 的内部内存,允许其它租户共享使用该内存资源 (root10.0.0.…

Java集合简略记录

一、集合体系结构 单列集合:Collection 双列集合:Map 二、单列集合 List系列集合:添加的元素是有序、可重复、有索引 有序指的是存和取的顺序是一致的,和之前排序的从小到大是没有任何关系的 Set系列集合:添加的元素是…

RandLA-Net 训练自定义数据集

https://arxiv.org/abs/1911.11236 搭建训练环境 git clone https://github.com/QingyongHu/RandLA-Net.git搭建 python 环境 , 这里我用的 3.9conda create -n randlanet python3.9 source activate randlanet pip install tensorflow2.15.0 -i https://pypi.tuna.tsinghua.e…

从CSV到数据库(简易)

需求:客户上传CSV文档,要求CSV文档内容查重/插入/更新相关数据。 框架:jdbcTemplate、commons-io、 DB:oracle 相关依赖: 这里本来打算用的2.11.0,无奈正式项目那边用老版本1.3.1,新版本对类型…

eNSP学习——RIP路由协议基础配置

目录 主要命令 原理概述 实验内容 实验目的 实验拓扑 实验编址 实验步骤 1、基本配置 2、使用RIPv1搭建网络 开启 RIP调试功能 3、使用RIPv2搭建网络 RIPv1和RIPv2的不同 需要eNSP各种配置命令的点击链接自取:华为eNSP各种设备配置命令大全PD…

使用Python库Matplotlib绘制常用图表类型

使用Python库Matplotlib绘图 一、Matplotlib绘图参数设置1.1 设置分辨率和画布大小1.2 保存图片并设置边缘留白为紧凑型1.3 设置坐标轴标签1.4 画直线设置线宽和颜色1.5 画子图1.5.1 通过figure的add_subplot()画子图1.5.2 通过plt的subplots画子图 二、使用Matplotlib中scatte…

经验分享,超声波车位引导系统和视频车位引导系统有哪些区别

随着城市化进程的加速和汽车保有量的持续增长,停车难已成为城市交通管理的一大挑战。车位引导系统作为解决这一问题的有效工具,其重要性日益凸显。它不仅能够提升停车场的运营效率,还能显著改善驾驶者的停车体验。目前市场上主要有两种车位引…

【Centos7】CentOS 7下的PyTorch安装策略:高效实践指南

【Centos7】CentOS 7下的PyTorch安装策略:高效实践指南 大家好 我是寸铁👊 总结了一篇【Centos7】CentOS 7下的PyTorch安装策略:高效实践指南✨ 喜欢的小伙伴可以点点关注 💝 前言 由于需要跑深度学习,要用到pytorch&a…

全域外卖项目能不能做?可行性分析来了!

作为新的网络热词,全域外卖的传播范围随着时间的推移而不断扩大,从最初的行业内部逐步扩散到多个创业者社区,让许多创业者都有了做全域外卖项目的想法。但是,由于全域外卖赛道刚兴起不久,因此,目前大多数人…

实时监控与报警:人员跌倒检测算法的实践

在全球范围内,跌倒事件对老年人和儿童的健康与安全构成了重大威胁。据统计,跌倒是老年人意外伤害和死亡的主要原因之一。开发人员跌倒检测算法的目的是通过技术手段及时发现和响应跌倒事件,减少因延迟救助而造成的严重后果。这不仅对老年人群…

Mysql(一)查询Sql是如何执行的

Hello,大家好我是极客涛😎,我最近在整理Mysql相关的知识点,所以准备开启一个Mysql的主线任务,大概耗时3周左右,整个节奏还是由浅入深,主要包括Mysql的架构、事务实现、索引组织形式、SQL优化、日…

[C][数据结构][时间空间复杂度]详细讲解

目录 0.铺垫1.时间复杂度 -- 衡量算法的运行快慢1.是什么?2.大O的渐进表示法 2.空间复杂度 - 衡量算法所需要的额外空间3.常见复杂度对比 0.铺垫 时间是累计的空间是不累计的,可以重复利用 1.时间复杂度 – 衡量算法的运行快慢 1.是什么? …

SQL Server数据库UNC路径注入攻击

点击星标,即时接收最新推文 本文选自《内网安全攻防:红队之路》 扫描二维码五折购书 UNC路径注入 如果我们能强制SQL服务器连接到我们控制的SMB共享,连接将会包含认证数据。更具体的来说,将会发起一个NTLM认证,我们将能…

词法分析器的设计与实现--编译原理操作步骤,1、你的算法工作流程图; 2、你的函数流程图;3,具体代码

实验原理: 词法分析是编译程序进行编译时第一个要进行的任务,主要是对源程序进行编译预处理之后,对整个源程序进行分解,分解成一个个单词,这些单词有且只有五类,分别时标识符、关键字(保留字&a…

【实物+仿真设计】智能安全门控制系统设计

《智能安全门控制系统设计 实物仿真》 整体功能: 本课题首先确定整个智能安全门控制系统进行总体方案设计。主要包括按键模块、 电磁锁模块、语音提示模块、人员检测模块。按键提供给用户人工交互的功能,用户可 以选择输入按键的方式控制安全门。单片机…