【Java基础】--Java排序

news2025/1/13 11:40:06

在这里插入图片描述

【Java基础】--Java排序

    • 1、选择排序(Select Sort)
    • 2、冒泡排序(Bubble Sort)
    • 3、插入排序(Insert Sort)
    • 4、希尔排序(Shell Sort)
    • 5、归并排序(Merge Sort)
    • 6、快速排序(Quick Sort)
    • 7、堆排序(Heap Sort)
    • 小结

待排序的元素需要实现 Java 的 Comparable 接口,该接口有 compareTo() 方法,可以用它来判断两个元素的大小关系。
研究排序算法的成本模型时,计算的是 比较和交换的次数
使用辅助函数 less() 和 swap() 来进行比较和交换的操作,使得代码的可读性和可移植性更好。

public abstract class Sort<T extends Comparable<T>> {
    public abstract void sort(T[] nums);
    protected boolean less(T v, T w) {
        return v.compareTo(w) < 0;
    } 
    protected void swap(T[] a, int i, int j) {
        T t = a[i];
        a[i] = a[j];
        a[j] = t;
    }
}

1、选择排序(Select Sort)

在这里插入图片描述
常规的方法:

import java.util.Arrays;
//选择排序:先定义一个记录最小元素的下标,然后循环一次后面的,找到最小的元素,最后将他放到前面排序好的序列。
public class SelectSort_02 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		for (int i = 0; i < a.length-1; i++) {
			int index=i;//标记第一个为待比较的数
			for (int j = i+1; j < a.length; j++) { //然后从后面遍历与第一个数比较
				if (a[j]<a[index]) {  //如果小,就交换最小值
					index=j;//保存最小元素的下标
				}
			}
			//找到最小值后,将最小的值放到第一的位置,进行下一遍循环
			int temp=a[index];
			a[index]=a[i];
			a[i]=temp;
		}
		System.out.println(Arrays.toString(a));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
	}
}

使用辅助函数:

public class Selection<T extends Comparable<T>> extends Sort<T> {
    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        for (int i = 0; i < N; i++) {
            int min = i;
            for (int j = i + 1; j < N; j++)
                if (less(nums[j], nums[min]))
                    min = j;
            swap(nums, i, min);
        }
    }
}

选择排序需要 ~N2/2 次比较和 ~N 次交换,它的运行时间与输入无关,这个特点使得它对一个已经排序的数组也需要这么多的比较和交换操作。

2、冒泡排序(Bubble Sort)

通过从左到右不断交换相邻逆序的相邻元素,在一轮的交换之后,可以让未排序的元素上浮到右侧。
在一轮循环中,如果没有发生交换,就说明数组已经是有序的,此时可以直接退出。
在这里插入图片描述

import java.util.Arrays;
//冒泡排序
public class BubbleSort_01 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		//记录比较次数
		int count=0;
		//i=0,第一轮比较
		for (int i = 0; i < a.length-1; i++) {
			//第一轮,两两比较
			for (int j = 0; j < a.length-1-i; j++) {
				if (a[j]>a[j+1]) {
					int temp=a[j];
					a[j]=a[j+1];
					a[j+1]=temp;
				}
				count++;
			}
		}
		System.out.println(Arrays.toString(a));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
		System.out.println("一共比较了:"+count+"次");//一共比较了:105次
	}
}

冒泡排序的优化:

import java.util.Arrays;
public class BubbleSort1_01 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		int count=0;
		for (int i = 0; i < a.length-1; i++) {
			boolean flag=true;
			for (int j = 0; j < a.length-1-i; j++) {
				if (a[j]>a[j+1]) {
					int temp=a[j];
					a[j]=a[j+1];
					a[j+1]=temp;
					flag=false;
				}
				count++;
			}
			if (flag) {
				break;
			}
		}
		System.out.println(Arrays.toString(a));// [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
		System.out.println("一共比较了:"+count+"次");//一共比较了:95次
	}
}

辅助函数方法:

public class Bubble<T extends Comparable<T>> extends Sort<T> {
    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        boolean hasSorted = false;
        for (int i = 0; i < N && !hasSorted; i++) {
            hasSorted = true;
            for (int j = 0; j < N - i - 1; j++) {
                if (less(nums[j + 1], nums[j])) {
                    hasSorted = false;
                    swap(nums, j, j + 1);
                }
            }
        }
    }
}

3、插入排序(Insert Sort)

插入排序从左到右进行,每次都将当前元素插入到左侧已经排序的数组中,使得插入之后左部数组依然有序。
第 j 元素是通过不断向左比较并交换来实现插入过程:当第 j 元素小于第 j - 1 元素,就将它们的位置交换,然后令 j指针向左移动一个位置,不断进行以上操作。
![在这里插入图片描述](https://img-blog.csdnimg.cn/e66c0bf24410475b96fca0b342ecf40c.pn

import java.util.Arrays;
//插入排序:定义一个待插入的数,再定义一个待插入数的前一个数的下标,然后拿待插入数与前面的数组一一比较,最后交换。
public class InsertSort_03 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		for (int i = 0; i < a.length; i++) {  //长度不减1,是因为要留多一个位置方便插入数
			//定义待插入的数
			int insertValue=a[i];
			//找到待插入数的前一个数的下标
			int insertIndex=i-1;
			while (insertIndex>=0 && insertValue <a[insertIndex]) {//拿a[i]与a[i-1]的前面数组比较
				a[insertIndex+1]=a[insertIndex];
				insertIndex--;
			}
			a[insertIndex+1]=insertValue;
		}
		System.out.println(Arrays.toString(a));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
	}
}

辅助函数方法:

public class Insertion<T extends Comparable<T>> extends Sort<T> {
    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        for (int i = 1; i < N; i++)
            for (int j = i; j > 0 && less(nums[j], nums[j - 1]); j--)
                swap(nums, j, j - 1);
    }
}

对于数组 {3, 5, 2, 4, 1},它具有以下逆序:(3, 2), (3, 1), (5, 2), (5, 4), (5, 1), (2, 1), (4, 1),插入排序每次只能交换相
邻元素,令逆序数量减少 1,因此插入排序需要交换的次数为逆序数量。
插入排序的复杂度取决于数组的初始顺序,如果数组已经部分有序了,逆序较少,那么插入排序会很快。

  • 平均情况下插入排序需要 ~N2/4 比较以及 ~N2/4 次交换;
  • 最坏的情况下需要 ~N2/2 比较以及 ~N2/2次交换,最坏的情况是数组是倒序的;
  • 最好的情况下需要 N-1 次比较和 0 次交换,最好的情况就是数组已经有序了。

4、希尔排序(Shell Sort)

对于大规模的数组,插入排序很慢,因为它只能交换相邻的元素,每次只能将逆序数量减少 1。
希尔排序的出现就是为了改进插入排序的这种局限性,它通过交换不相邻的元素,每次可以将逆序数量减少大于1。
希尔排序使用插入排序对间隔 h 的序列进行排序。通过不断减小 h,最后令 h=1,就可以使得整个数组是有序的。
在这里插入图片描述

public class Shell<T extends Comparable<T>> extends Sort<T> {
    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        int h = 1;
        while (h < N / 3)
            h = 3 * h + 1; // 1, 4, 13, 40, ...
        while (h >= 1) {
            for (int i = h; i < N; i++)
                for (int j = i; j >= h && less(nums[j], nums[j - h]); j -= h)
                    swap(nums, j, j - h);
            h = h / 3;
        }
    }
}

希尔排序的运行时间达不到平方级别,使用递增序列 1, 4, 13, 40, … 的希尔排序所需要的比较次数不会超过 N 的若干倍乘于递增序列的长度。后面介绍的高级排序算法只会比希尔排序快两倍左右。
常规代码:

import java.util.Arrays;
//希尔排序:插入排序的升级
public class ShellSort_04 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		int count=0;//比较次数
		for (int gap=a.length / 2; gap > 0; gap = gap / 2) {
			//将整个数组分为若干个子数组
			for (int i = gap; i < a.length; i++) {
				//遍历各组的元素
				for (int j = i - gap; j>=0; j=j-gap) {
					//交换元素
					if (a[j]>a[j+gap]) {
						int temp=a[j];
						a[j]=a[j+gap];
						a[j+gap]=temp;
						count++;
					}
				}
			}
		}
		System.out.println(count);//16
		System.out.println(Arrays.toString(a));//[2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
	}
}

5、归并排序(Merge Sort)

归并排序的思想是将数组分成两部分,分别进行排序,然后归并起来。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
常规代码:

import java.util.Arrays;
//归并排序
public class MergeSort_06 {
	public static void main(String[] args) {
		int a[]={3,44,38,5,47,15,36,26,27,2,46,4,19,50,48};
		//int a[]={5,2,4,7,1,3,2,2};
		int temp[]=new int[a.length];
		mergesort(a,0,a.length-1,temp);
		System.out.println(Arrays.toString(a));
	}
	private static void mergesort(int[] a, int left, int right, int[] temp) {
		//分解
		if (left<right) {
			int mid=(left+right)/2;
			//向左递归进行分解
			mergesort(a, left, mid, temp);
			//向右递归进行分解
			mergesort(a, mid+1, right, temp);
			//每分解一次便合并一次
			merge(a,left,right,mid,temp);
		}
	}
	/**
	 *
	 * @param a  待排序的数组
	 * @param left  左边有序序列的初始索引
	 * @param right 右边有序序列的初始索引
	 * @param mid	中间索引
	 * @param temp	做中转的数组
	 */
	private static void merge(int[] a, int left, int right, int mid, int[] temp) {
		int i=left; //初始i,左边有序序列的初始索引
		int j=mid+1;//初始化j,右边有序序列的初始索引(右边有序序列的初始位置即中间位置的后一位置)
		int t=0;//指向temp数组的当前索引,初始为0
		
		//先把左右两边的数据(已经有序)按规则填充到temp数组
		//直到左右两边的有序序列,有一边处理完成为止
		while (i<=mid && j<=right) {
			//如果左边有序序列的当前元素小于或等于右边的有序序列的当前元素,就将左边的元素填充到temp数组中
			if (a[i]<=a[j]) {
				temp[t]=a[i];
				t++;//索引向后移
				i++;//i后移
			}else {
				//反之,将右边有序序列的当前元素填充到temp数组中
				temp[t]=a[j];
				t++;//索引向后移
				j++;//j后移
			}
		}
		//把剩余数据的一边的元素填充到temp中
		while (i<=mid) {
			//此时说明左边序列还有剩余元素
			//全部填充到temp数组
			temp[t]=a[i];
			t++;
			i++;
		}
		while (j<=right) {
			//此时说明左边序列还有剩余元素
			//全部填充到temp数组
			temp[t]=a[j];
			t++;
			j++;
		}
		//将temp数组的元素复制到原数组
		t=0;
		int tempLeft=left;
		while (tempLeft<=right) {
			a[tempLeft]=temp[t];
			t++;
			tempLeft++;
		}
	}
	
}

1. 归并方法
归并方法将数组中两个已经排序的部分归并成一个。

public abstract class MergeSort<T extends Comparable<T>> extends Sort<T> {
    protected T[] aux;
    protected void merge(T[] nums, int l, int m, int h) {
        int i = l, j = m + 1;
        for (int k = l; k <= h; k++)
            aux[k] = nums[k]; // 将数据复制到辅助数组
        for (int k = l; k <= h; k++) {
            if (i > m)
                nums[k] = aux[j++];
            else if (j > h)
                nums[k] = aux[i++];
            else if (aux[i].compareTo(nums[j]) <= 0)
                nums[k] = aux[i++]; // 先进行这一步,保证稳定性
            else
                nums[k] = aux[j++];
        }
    }
}

2. 自顶向下归并排序
在这里插入图片描述

public class Up2DownMergeSort<T extends Comparable<T>> extends MergeSort<T> {
    @Override
    public void sort(T[] nums) {
        aux = (T[]) new Comparable[nums.length];
        sort(nums, 0, nums.length - 1);
    } p
    rivate void sort(T[] nums, int l, int h) {
        if (h <= l)
            return;
        int mid = l + (h - l) / 2;
        sort(nums, l, mid);
        sort(nums, mid + 1, h);
        merge(nums, l, mid, h);
    }
}

因为每次都将问题对半分成两个子问题,而这种对半分的算法复杂度一般为 O(NlogN),因此该归并排序方法的时间复杂度也为 O(NlogN)
3. 自底向上归并排序
先归并那些微型数组,然后成对归并得到的微型数组。

public class Down2UpMergeSort<T extends Comparable<T>> extends MergeSort<T> {
    @Override
    public void sort(T[] nums) {
        int N = nums.length;
        aux = (T[]) new Comparable[N];
        for (int sz = 1; sz < N; sz += sz)
            for (int lo = 0; lo < N - sz; lo += sz + sz)
                merge(nums, lo, lo + sz - 1, Math.min(lo + sz + sz - 1, N - 1));
    }
}

6、快速排序(Quick Sort)

1. 基本算法

  • 归并排序将数组分为两个子数组分别排序,并将有序的子数组归并使得整个数组排序;
  • 快速排序通过一个切分元素将数组分为两个子数组,左子数组小于等于切分元素,右子数组大于等于切分元素,将这两个子数组排序也就将整个数组排序了。
    在这里插入图片描述
public class QuickSort<T extends Comparable<T>> extends Sort<T> {
    @Override
    public void sort(T[] nums) {
        shuffle(nums);
        sort(nums, 0, nums.length - 1);
    } 
    private void sort(T[] nums, int l, int h) {
        if (h <= l)
            return;
        int j = partition(nums, l, h);
        sort(nums, l, j - 1);
        sort(nums, j + 1, h);
    } 
    private void shuffle(T[] nums) {
        List<Comparable> list = Arrays.asList(nums);
        Collections.shuffle(list);
        list.toArray(nums);
    }
}

2. 切分
取 a[lo] 作为切分元素,然后从数组的左端向右扫描直到找到第一个大于等于它的元素,再从数组的右端向左扫描,找到第一个小于等于它的元素,交换这两个元素,并不断进行这个过程,就可以保证左指针 i 的左侧元素都不大于切分元素,右指针 j 的右侧元素都不小于切分元素。当两个指针相遇时,将切分元素 a[lo] 和 a[j] 交换位置。
在这里插入图片描述

private int partition(T[] nums, int l, int h) {
        int i = l, j = h + 1;
        T v = nums[l];
        while (true) {
            while (less(nums[++i], v) && i != h) ;
            while (less(v, nums[--j]) && j != l) ;
            if (i >= j)
                break;
            swap(nums, i, j);
        } 
        swap(nums, l, j);
        return j;
    }

3. 性能分析
快速排序是原地排序,不需要辅助数组,但是递归调用需要辅助栈。
快速排序最好的情况下是每次都正好能将数组对半分,这样递归调用次数才是最少的。这种情况下比较次数为CN=2CN/2+N,复杂度为 O(NlogN)
最坏的情况下,第一次从最小的元素切分,第二次从第二小的元素切分,如此这般。因此最坏的情况下需要比较N2/2。为了防止数组最开始就是有序的,在进行快速排序时需要随机打乱数组。
4. 算法改进
(一)切换到插入排序
因为快速排序在小数组中也会递归调用自己,对于小数组,插入排序比快速排序的性能更好,因此在小数组中可以
切换到插入排序。
(二)三数取中
最好的情况下是每次都能取数组的中位数作为切分元素,但是计算中位数的代价很高。人们发现取 3 个元素并将大
小居中的元素作为切分元素的效果最好。
(三)三向切分
对于有大量重复元素的数组,可以将数组切分为三部分,分别对应小于、等于和大于切分元素。三向切分快速排序对于只有若干不同主键的随机数组可以在线性时间内完成排序。

public class ThreeWayQuickSort<T extends Comparable<T>> extends QuickSort<T> {
    @Override
    protected void sort(T[] nums, int l, int h) {
        if (h <= l)
            return;
        int lt = l, i = l + 1, gt = h;
        T v = nums[l];
        while (i <= gt) {
            int cmp = nums[i].compareTo(v);
            if (cmp < 0)
                swap(nums, lt++, i++);
            else if (cmp > 0)
                swap(nums, i, gt--);
            else
                i++;
        } 
        sort(nums, l, lt - 1);
        sort(nums, gt + 1, h);
    }
}

5. 基于切分的快速选择算法
快速排序的 partition() 方法,会返回一个整数 j 使得 a[l…j-1] 小于等于 a[j],且 a[j+1…h] 大于等于 a[j],此时 a[j]就是数组的第 j 大元素。
可以利用这个特性找出数组的第 k 个元素。

public T select(T[] nums, int k) {
        int l = 0, h = nums.length - 1;
        while (h > l) {
        int j = partition(nums, l, h);
        if (j == k)
        return nums[k];
        else if (j > k)
        h = j - 1;
        else
        l = j + 1;
        } 
        return nums[k];
        }

该算法是线性级别的。因为每次能将数组二分,那么比较的总次数为 (N+N/2+N/4+…),直到找到第 k 个元素,这个和显然小于 2N。

7、堆排序(Heap Sort)

在这里插入图片描述

  • 第一步:构建初始堆buildHeap, 使用sink(arr,i, length)调整堆顶的值;
  • 第二步:将堆顶元素下沉 目的是将最大的元素浮到堆顶来,然后使用sink(arr, 0,length)调整;
    1. 堆
    堆的某个节点的值总是大于等于子节点的值,并且堆是一颗完全二叉树。
    堆可以用数组来表示,因为堆是完全二叉树,而完全二叉树很容易就存储在数组中。位置 k 的节点的父节点位置为k/2,而它的两个子节点的位置分别为 2k 和 2k+1。这里不使用数组索引为 0 的位置,是为了更清晰地描述节点的位置关系。
    在这里插入图片描述
public class Heap<T extends Comparable<T>> {
    private T[] heap;
    private int N = 0;
    public Heap(int maxN) {
        this.heap = (T[]) new Comparable[maxN + 1];
    } 
    public boolean isEmpty() {
        return N == 0;
    } 
    public int size() {
        return N;
    } 
    private boolean less(int i, int j) {
        return heap[i].compareTo(heap[j]) < 0;
    } 
    private void swap(int i, int j) {
        T t = heap[i];
        heap[i] = heap[j];
        heap[j] = t;
    }
}

2. 上浮和下沉
在堆中,当一个节点比父节点大,那么需要交换这个两个节点。交换后还可能比它新的父节点大,因此需要不断地进行比较和交换操作,把这种操作称为上浮。
在这里插入图片描述

private void swim(int k) {
        while (k > 1 && less(k / 2, k)) {
            swap(k / 2, k);
            k = k / 2;
        }
    }

类似地,当一个节点比子节点来得小,也需要不断地向下进行比较和交换操作,把这种操作称为下沉。一个节点如果有两个子节点,应当与两个子节点中最大那么节点进行交换。
在这里插入图片描述

private void sink(int k) {
        while (2 * k <= N) {
        	int j = 2 * k;
        if (j < N && less(j, j + 1))
        	j++;
        if (!less(k, j))
        	break;
        swap(k, j);
        k = j;
        }
        }

3. 插入元素
将新元素放到数组末尾,然后上浮到合适的位置。

public void insert(Comparable v) {
	heap[++N] = v;
	swim(N);
}

4. 删除最大元素
从数组顶端删除最大的元素,并将数组的最后一个元素放到顶端,并让这个元素下沉到合适的位置。

public T delMax() {
	T max = heap[1];
	swap(1, N--);
	heap[N + 1] = null;
	sink(1);
	return max;
}

5. 堆排序
由于堆可以很容易得到最大的元素并删除它,不断地进行这种操作可以得到一个递减序列。如果把最大元素和当前堆中数组的最后一个元素交换位置,并且不删除它,那么就可以得到一个从尾到头的递减序列,从正向来看就是一个递增序列。因此很容易使用堆来进行排序。并且堆排序是原地排序,不占用额外空间。
(一)构建堆
无序数组建立堆最直接的方法是从左到右遍历数组,然后进行上浮操作。一个更高效的方法是从右至左进行下沉操作,如果一个节点的两个节点都已经是堆有序,那么进行下沉操作可以使得这个节点为根节点的堆有序。叶子节点不需要进行下沉操作,可以忽略叶子节点的元素,因此只需要遍历一半的元素即可。
在这里插入图片描述
(二)交换堆顶元素与最后一个元素
交换之后需要进行下沉操作维持堆的有序状态。
在这里插入图片描述

public class HeapSort<T extends Comparable<T>> extends Sort<T> {
    /**
     * 数组第 0 个位置不能有元素
     */
    @Override
    public void sort(T[] nums) {
        int N = nums.length - 1;
        for (int k = N / 2; k >= 1; k--)
            sink(nums, k, N);
        while (N > 1) {
            swap(nums, 1, N--);
            sink(nums, 1, N);
        }
    } 
    private void sink(T[] nums, int k, int N) {
        while (2 * k <= N) {
            int j = 2 * k;
            if (j < N && less(nums, j, j + 1))
                j++;
            if (!less(nums, k, j))
                break;
            swap(nums, k, j);
            k = j;
        }
    } 
    private boolean less(T[] nums, int i, int j) {
        return nums[i].compareTo(nums[j]) < 0;
    }
}

6. 分析

  • 一个堆的高度为 logN,因此在堆中插入元素和删除最大元素的复杂度都为 logN
  • 对于堆排序,由于要对 N 个节点进行下沉操作,因此复杂度为 NlogN
  • 堆排序时一种原地排序,没有利用额外的空间。
  • 现代操作系统很少使用堆排序,因为它无法利用局部性原理进行缓存,也就是数组元素很少和相邻的元素进行比较。

小结

1. 排序算法的比较
在这里插入图片描述
快速排序是最快的通用排序算法,它的内循环的指令很少,而且它还能利用缓存,因为它总是顺序地访问数据。它的运行时间近似为 ~cNlogN,这里的 c 比其他线性对数级别的排序算法都要小。使用三向切分快速排序,实际应用中可能出现的某些分布的输入能够达到线性级别,而其它排序算法仍然需要线性对数时间。
2. Java 的排序算法实现
Java 主要排序方法为 java.util.Arrays.sort(),对于原始数据类型使用三向切分的快速排序,对于引用类型使用归并排序
3、其他排序
基数排序:基数排序是用空间换时间的经典算法,当数据足够多时,达到几千万级别时内存空间可能不够用了,发生堆内存溢出。
计数排序 (Count Sort)
桶排序(Bucket Sort):桶排序可以看成是计数排序的升级版,它将要排的数据分到多个有序的桶里,每个桶里的数据再单独排序,再把每个桶的数据依次取出,即可完成排序。
时间复杂度如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/178928.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Facebook SEO中参与度的重要性

参与度&#xff0c;也就是大家所说的浏览量&#xff0c;在 Facebook SEO中也叫做页面访问者参与度。一般来说&#xff0c; Facebook的用户在上面停留的时间越长代表着它在用户心目中的形象越好&#xff0c;这也是为什么 Facebook上的访客愿意打开自己的 Facebook页面让好友帮忙…

使用vite构建vue3项目详细介绍(ts+pinia+sass+vue-router+axios+element-plus)

使用vite构建vue3项目详细介绍(tspiniasassvue-routeraxioselement-plus) 1. 创建项目 npm init vitelatest 2. 配置 vite.config.ts path需要安装--npm install types/node --save-dev import vue from vitejs/plugin-vue; import { resolve } from path; import { defineC…

Jupyter的安装与默认目录的切换

下载与安装 清华大学开源软件镜像站 使用国内镜像下载更快&#xff0c;官网下载很慢 下载msi镜像文件&#xff0c;打开安装&#xff1a; 安装完成后得到4个文件 Reset Spyder...和Anaconda Powershell....都是相应的配置&#xff0c;其中后者是Jupyter和anaconda的dos命令窗口…

Coolify系列02-从0到1超详细手把手教你上手Coolify

重启 如果由于某种原因&#xff0c;你的实例崩溃了&#xff0c;你可以用下面的命令重新启动它: wget -q https://get.coollabs.io/coolify/install.sh \ -O install.sh; sudo bash ./install.sh -r防火墙设置 您需要在防火墙中允许以下端口 Coolify: 3000 (required)Revers…

【Mysql】Mysql的存储引擎

【Mysql】Mysql的存储引擎 文章目录【Mysql】Mysql的存储引擎1.概述2. 特点2.1 InnoDB2.2 MyISAM2.3 Memory2.4 区别3. 选择1.概述 **存储引擎&#xff1a;存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式。**存储引擎是基于表的&#xff0c;而不是 基于库的&…

HTTPS工作原理详解加密(TLS握手)过程

HTTPS概念 HTTPS就是一个有安全保障的HTTP通信&#xff0c;我们都知道&#xff0c;http是明文传输的&#xff0c;http报文是人肉眼就可识别的ASCII码&#xff0c;在通信过程中&#xff0c;http报文很容易被黑客窃听、篡改、伪造&#xff0c;而在互联网交易中&#xff0c;我们必…

【1】初识Linux

学习笔记目录 学习教程&#xff1a;B站 “黑马程序员” 初识Linux--入门Linux基础命令--会用Linux权限管控--懂权限Linux实用操作--熟练实战软件部署--深入掌握脚本&自动化--用的更强项目实战--学到经验云平台技术--紧跟潮流 操作系统概述 1.计算机由硬件和软件两个主要…

AcWing 12. 背包问题求具体方案

AcWing 12. 背包问题求具体方案AcWing 12. 背包问题求具体方案&#xff08;1&#xff09;问题&#xff08;2&#xff09;分析&#xff08;3&#xff09;代码AcWing 12. 背包问题求具体方案 &#xff08;1&#xff09;问题 &#xff08;2&#xff09;分析 我们先看一下这道题中…

tomcat更改默认端口

如下图把conf目录下的server.xml的下图所示处由原来的8080改为需要的即可&#xff1b;当前改为8087&#xff1b;保存之后重启tomcat&#xff1b; 网上一个资料说如果要运行2个tomcat&#xff0c;把下图的8009改为自己的&#xff0c;例如18009&#xff0c; 把下图的8005改为自己…

pythpon基础:创建文件索引升级版

需求环境 这是公司的一个需求&#xff0c;有一份很庞大的数据由好多视频文件组成&#xff0c;总共有12T左右&#xff0c;视频来源是一些下载的视频素材。每隔一段时间就要将一部分筛选好的视频文件剪切到server02服务器进行转码&#xff0c;筛选没被选中的文件将被删除。从下载…

5. 蒙特卡洛方法

蒙特卡洛方法5. 离轨策略5.1 策略评估&#xff08;基于重要度采样&#xff09;5.1.1 计算目标策略下的状态值5.1.2 蒙特卡洛算法&#xff08;状态值估计&#xff09;5.1.3 增量式的实现5.2 策略迭代5.3 减少重要性采样方差的方法5.3.1 折扣敏感的重要性采样5.3.2 每决策重要性抽…

go 语言 string 类型思考

string 作为 go 语言中的基础类型&#xff0c;其实有一些需要反复揣摩的&#xff0c;可能是我们使用的场景太简单&#xff0c;也可能是我们不需要那可怜的一点优化来提高性能&#xff0c;对它也就没那么上心了。 文章运行环境&#xff1a;go version go1.16.6 darwin/amd64 并…

浅析Java中的final关键字

一.final关键字的基本用法 在Java中&#xff0c;final关键字可以用来修饰类、方法和变量&#xff08;包括成员变量和局部变量&#xff09;。下面就从这三个方面来了解一下final关键字的基本用法。 1.修饰类 当用final修饰一个类时&#xff0c;表明这个类不能被继承。也就是说&a…

ACL访问控制的基本实例

典型案例&#xff1a; 配置需求∶ 在Router上部署基本ACL后&#xff0c;ACL将试图穿越Router的源地址为192.168.1.0/24网段的数据包过滤掉&#xff0c;并放行其他流量&#xff0c;从而禁止192.168.1.0/24网段的用户访问Router右侧的服务器网络。 配置&#xff1a; 1、Router已…

第三章 变量

一、数据类型&#xff08;P40&#xff09; 每一种数据都定义了明确的数据类型&#xff0c;在内存中分配了不同大小的内存空间(字节)。二、整数类型 整型的使用细节&#xff1a; &#xff08;1&#xff09;Java 各整数类型有固定的范围和字段长度&#xff0c;不受具体OS【操作系…

Java多线程(四)——ThreadPoolExecutor源码解析

ThreadPoolExecutor源码解析 多线程场景下&#xff0c;手动创建线程有许多缺点&#xff1a; 频繁创建、销毁线程会消耗大量 CPU 资源&#xff0c;销毁线程后需要被回收&#xff0c;对 GC 垃圾回收也有一定的压力 使用线程池有许多好处&#xff1a; 降低 CPU 资源消耗。通过…

Linux运维之解决服务器挖矿木马问题

文章目录1 挖矿木马1.1 定义1.2 挖矿特征1.3 解决挖矿木马1.3.1 阻断异常网络通信&#xff08;非必需&#xff09;1.3.2 清除定时任务1.3.3 清除启动项1.3.4 清除SSH公钥1.3.5 清除木马进程1.4 其他常见问题1.4.1 清除木马后又100%1.4.2 CPU占用100%却看不到进程1 挖矿木马 1.…

Python OS 文件目录方法 os.walk()

Python OS 文件/目录方法 os.walk() 概述 os.walk() 方法用于通过在目录树中游走输出在目录中的文件名&#xff0c;向上或者向下。 os.walk() 方法是一个简单易用的文件、目录遍历器&#xff0c;可以帮助我们高效的处理文件、目录方面的事情。 在Unix&#xff0c;Windows中…

BFS(三)腐烂的橘子(感染问题)

994. 腐烂的橘子 在给定的 m x n 网格 grid 中&#xff0c;每个单元格可以有以下三个值之一&#xff1a; 值 0 代表空单元格&#xff1b; 值 1 代表新鲜橘子&#xff1b; 值 2 代表腐烂的橘子。 每分钟&#xff0c;腐烂的橘子 周围 4 个方向上相邻 的…

领导看到我自用的IDEA插件,也回去悄悄安装了...

现在哪有程序员离得开 Idea 啊&#xff01;没有 Idea 的程序员那还有灵魂吗&#xff1f;那没有&#xff01;既然我们都用 Idea&#xff0c;如何提高 Idea 的开发效率&#xff0c;在开发工具上&#xff0c;我们就卷掉其他小伙伴呢&#xff01;今天鸡翅老哥就来给大家介绍几款我一…