线性代数|机器学习-P2 A的列向量空间

news2024/11/15 22:49:03

文章目录

  • 1. Ax矩阵的形式
  • 2. A=CR 矩阵分解
    • 2.1 rank=1 矩阵分解
    • 2.2 rank=2 矩阵分解
    • 2.3 A=CMR,求M
  • 3. Ax 向量

1. Ax矩阵的形式

假设我们有如下矩阵A:
A x = [ 2 1 3 3 1 4 5 7 12 ] [ x 1 x 2 x 3 ] \begin{equation} Ax=\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix} \end{equation} Ax= 2351173412 x1x2x3

  • 从行角度计算如下:
    A x = [ 2 1 3 ] [ x 1 x 2 x 3 ] + [ 3 1 4 ] [ x 1 x 2 x 3 ] + [ 5 7 12 ] [ x 1 x 2 x 3 ] \begin{equation} Ax=\begin{bmatrix} 2&1&3 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix}+\begin{bmatrix} 3&1&4 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix}+\begin{bmatrix} 5&7&12 \end{bmatrix}\begin{bmatrix}x_1\\\\x_2\\\\x_3\end{bmatrix} \end{equation} Ax=[213] x1x2x3 +[314] x1x2x3 +[5712] x1x2x3
    这是我们常规的思路,但是有一个问题,现在是 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个变量,可以用三维空间想象画图等,但是当我们有 x 1 , x 2 , x 3 , x 4 , x 5 x_1,x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5的时候,我们就无法想到5维度空间,所以我们在矩阵相乘的过程中用到行向量空间的角度思考是低端的思维思路。所以我们提出了列向量的角度
  • 从列角度计算如下:
    A x = x 1 [ 2 3 5 ] + x 2 [ 1 1 7 ] + x 3 [ 3 4 12 ] \begin{equation} Ax=x_1\begin{bmatrix} 2\\\\ 3\\\\ 5 \end{bmatrix}+x_2\begin{bmatrix} 1\\\\ 1\\\\ 7 \end{bmatrix}+x_3\begin{bmatrix} 3\\\\ 4\\\\ 12 \end{bmatrix} \end{equation} Ax=x1 235 +x2 117 +x3 3412
    v 1 = x 1 [ 2 3 5 ] , v 2 = x 2 [ 1 1 7 ] ; v 3 = x 3 [ 3 4 12 ] ; A x = v 1 + v 2 + v 3 \begin{equation} v_1=x_1\begin{bmatrix} 2\\\\ 3\\\\ 5 \end{bmatrix},v_2=x_2\begin{bmatrix} 1\\\\ 1\\\\ 7 \end{bmatrix};v_3=x_3\begin{bmatrix} 3\\\\ 4\\\\ 12 \end{bmatrix};Ax=v_1+v_2+v_3 \end{equation} v1=x1 235 ,v2=x2 117 ;v3=x3 3412 ;Ax=v1+v2+v3

这样可以看出,对于Ax=b来说,矩阵b就是A的列向量的线性组合,这样及时再加几个列向量,我们可以用向量的形式表示,我们处理起来也非常的方便。通过列乘以行的方式是一种更高级的矩阵理解方式。
在这里插入图片描述

  • 小结:
    所以对于矩阵A和向量x相乘得到的结果Ax可以看做是对于矩阵A的列向量的线性组合后得到的向量,那么这个向量也一定在A的列空间中。假设我们x是随机的,那么我们可以得到矩阵A的整个列空间。

2. A=CR 矩阵分解

2.1 rank=1 矩阵分解

假设我们有矩阵A表示如下,我们希望将矩阵分解成为列向量和行向量的组合。
A = [ 1 3 8 1 3 8 1 3 8 ] \begin{equation} A=\begin{bmatrix} 1&3&8\\\\ 1&3&8\\\\ 1&3&8 \end{bmatrix} \end{equation} A= 111333888

  • 将矩阵A的第一列拿出来。 v 1 = [ 1 1 1 ] v_1=\begin{bmatrix}1\\\\1\\\\1\end{bmatrix} v1= 111
  • 将矩阵A的第二列拿出来,发现与第二列,第三列线性相关,所以停止拿出来,说以只有一列
    ,最终得到如下分解矩阵
    A = [ 1 1 1 ] [ 1 3 8 ] \begin{equation} A=\begin{bmatrix} 1\\\\1\\\\1 \end{bmatrix}\begin{bmatrix} 1&3&8 \end{bmatrix} \end{equation} A= 111 [138]

2.2 rank=2 矩阵分解

我们有如下矩阵A,将矩阵A进行分解,得到A=CR:
A = [ 2 1 3 3 1 4 5 7 12 ] \begin{equation} A=\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix} \end{equation} A= 2351173412

  • 第一步,我们先取矩阵A的第一列, v 1 = [ 2 , 3 , 5 ] T v_1=[2,3,5]^T v1=[2,3,5]T非零,那么就把 v 1 v_1 v1放到列空间中
  • 第二步,我们再取矩阵A的第二列,发现 v 1 T v 2 ≠ 0 v_1^Tv_2\neq0 v1Tv2=0,那么就把 v 2 v_2 v2放到列空间中
  • 第三步,我们再取矩阵A的第三列,发现 v 1 + v 2 = v 3 v_1+v_2=v_3 v1+v2=v3,那么 v 3 v_3 v3就抛弃,这样就形成了列满秩的矩阵C
    C = [ 2 1 3 1 5 7 ] \begin{equation} C=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix} \end{equation} C= 235117
  • 第四步,我们通过矩阵的大小可得矩阵R为2行3列,那么可以发现,矩阵A的第一列为C的第一列,那么可以得到矩阵C的第一列为 c 1 = [ 1 , 0 ] T c_1=[1, 0]^T c1=[1,0]T
  • 第五步,同理可得矩阵A的第二列为矩阵C的第二列,那么 c 2 = [ 0 , 1 ] T c_2=[0, 1]^T c2=[0,1]T
  • 第六步,我们知道矩阵A的第三列为矩阵C的第一列和第二列之和,那么可得 c 3 = [ 1 , 1 ] T c_3=[1, 1]^T c3=[1,1]T
  • 第七步,综上可得方程A=CR表示如下:
    A = C R ⇒ [ 2 1 3 3 1 4 5 7 12 ] = [ 2 1 3 1 5 7 ] [ 1 0 1 0 1 1 ] \begin{equation} A=CR\Rightarrow\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix}\begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix} \end{equation} A=CR 2351173412 = 235117 100111
  • 我们再行分解,可得
    [ 2 1 3 ] = 2 [ 1 0 1 ] + 1 [ 0 1 1 ] \begin{equation} \begin{bmatrix}2&1&3\end{bmatrix}=2\begin{bmatrix}1&0&1\end{bmatrix}+1\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [213]=2[101]+1[011]
    [ 3 1 4 ] = 3 [ 1 0 1 ] + 1 [ 0 1 1 ] \begin{equation} \begin{bmatrix}3&1&4\end{bmatrix}=3\begin{bmatrix}1&0&1\end{bmatrix}+1\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [314]=3[101]+1[011]
    [ 5 7 12 ] = 5 [ 1 0 1 ] + 7 [ 0 1 1 ] \begin{equation} \begin{bmatrix}5&7&12\end{bmatrix}=5\begin{bmatrix}1&0&1\end{bmatrix}+7\begin{bmatrix}0&1&1\end{bmatrix} \end{equation} [5712]=5[101]+7[011]
  • 那么可以得到如下:
    [ 2 1 3 3 1 4 ] = [ 2 1 3 1 ] [ 1 0 1 0 1 1 ] ⇒ [ 1 0 1 0 1 1 ] = [ − 1 1 3 − 2 ] [ 2 1 3 3 1 4 ] \begin{equation} \begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1 \end{bmatrix}\begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix}\Rightarrow \begin{bmatrix} 1&0&1\\\\ 0&1&1 \end{bmatrix}=\begin{bmatrix} -1&1\\\\ 3&-2 \end{bmatrix}\begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix} \end{equation} 231134 = 2311 100111 100111 = 1312 231134
  • 那么A=CR公式可以整理为A=CMR公式
    A = C M R ⇒ [ 2 1 3 3 1 4 5 7 12 ] = [ 2 1 3 1 5 7 ] [ − 1 1 3 − 2 ] [ 2 1 3 3 1 4 ] \begin{equation} A=CMR\Rightarrow\begin{bmatrix} 2&1&3\\\\ 3&1&4\\\\ 5&7&12 \end{bmatrix}=\begin{bmatrix} 2&1\\\\ 3&1\\\\ 5&7 \end{bmatrix}\begin{bmatrix} -1&1\\\\ 3&-2 \end{bmatrix}\begin{bmatrix} 2&1&3\\\\ 3&1&4 \end{bmatrix} \end{equation} A=CMR 2351173412 = 235117 1312 231134
  • 小结: 这样做的好处是C,M,R均是满秩矩阵,这样我们可以对矩阵A进行进一步分解,真是神奇的思路,解决了SVD奇异值分解中 Σ \Sigma Σ矩阵无法满秩的情况,而且CR均是来自原始矩阵A的列向量(列满秩)和行向量(行满秩)。真是太神奇了。

2.3 A=CMR,求M

当我们知道 A=CMR, 那么如何求快速的求得M呢?
A = C M R → C T A R T = ( C T C ) M ( R R T ) → M = ( C T C ) − 1 ( C T A R T ) ( R R T ) − 1 \begin{equation} A=CMR\rightarrow C^TAR^T=(C^TC)M(RR^T)\rightarrow M=(C^TC)^{-1}(C^TAR^T)(RR^T)^{-1} \end{equation} A=CMRCTART=(CTC)M(RRT)M=(CTC)1(CTART)(RRT)1

3. Ax 向量

假设x是一个随机的列向量,如果我们给了100个随机的x,那么我们可以通过Ax来得到一系列的列向量空间,这个列向量空间也会随着x的增多而和A的列空间相似,这个就是随机采样的思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1788980.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Redis数据库百万字详解】数据持久化

文章目录 一、持久化1.1、什么是持久化1.2、持久化方式1.3、RDB优缺点1.4、AOF优缺点 二、RDB持久化触发机制2.1、手动触发2.2、自动触发 三、RDB持久化配置3.1、配置文件3.2、配置查询/设置3.3、禁用持久化3.4、RDB文件恢复 四、RDB持久化案例4.1、手动持久化4.2、自动持久化案…

【计算机网络】对应用层HTTP协议的重点知识的总结

˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如…

超越传统AI 新型多智能体系统MESA,探索效率大幅提升

探索多智能体强化学习的协同元探索 —— MESA 算法深度解读在多智能体强化学习(MARL)的征途中,如何高效探索以发现最优策略一直是研究者们面临的挑战。特别是在稀疏奖励的环境中,这一问题变得更加棘手。《MESA: Cooperative Meta-…

【Vue】v-model在其他表单元素的使用

讲解内容: 常见的表单元素都可以用 v-model 绑定关联 → 快速 获取 或 设置 表单元素的值 它会根据 控件类型 自动选取 正确的方法 来更新元素 输入框 input:text ——> value 文本域 textarea ——> value 复选框 input:checkbox ——> checked…

Java 垃圾回收

文章目录 1 Java 垃圾回收1.1 JVM1.2 Java 对象生命周期 2 如何判断一个对象可被回收2.1 引用计数算法2.2 可达性分析算法 3 垃圾回收过程3.1 总体过程3.2 为什么要进行世代垃圾回收?3.3 分代垃圾回收过程 在 C 和 C 中,许多对象要求程序员声明他们后为其…

SpringMVC:拦截器(Interceptor)

1. 简介 拦截器(Interceptor)类似于过滤器(Filter) Spring MVC的拦截器作用是在请求到达控制器之前或之后进行拦截,可以对请求和响应进行一些特定的处理。拦截器可以用于很多场景下: 1. 登录验证&#xf…

Facebook开户|如何科学高效投放Facebook Ads

中午好家人们~今天Zoey来聊聊如何科学高效投放Facebook Ads~ 一、定义目标受众 在开始广告投放之前,需要明确定义你的目标受众。你可以根据受众的年龄、性别、兴趣、行为以及他们所在的地理位置等信息来确定目标受众。这样有助于创建精准的广告,并确保广…

PieCloudDB Database Flink Connector:让数据流动起来

面对客户环境中长期运行的各种类型的传统数据库,如何优雅地设计数据迁移的方案,既能灵活地应对各种数据导入场景和多源异构数据库,又能满足客户对数据导入结果的准确性、一致性、实时性的要求,让客户平滑地迁移到 PieCloudDB 数据…

降重工具:AI辅助下的论文查重率优化

确保论文的原创性和学术诚信是每位学生毕业的关键步骤,而论文查重和降重在此过程中起着至关重要的作用。 传统的论文查重通常依赖于查重软件和个人复查,而降重则涉及改写、同义词替换、内容的扩展与深化以及正确引用等方法,这些步骤不仅耗时…

MySQL——索引失效的10种情况

MySQL中提高性能的一个最有效的方式是对数据表设计合理的索引。索引提供了高效访问数据的方法,并且加快查询速度,因此索引对查询的速度有着至关重要的影响。 使用索引可以快速定位表中的某条记录,从而提高数据库查询的速度,提高数…

功能强大且专业的PDF转换软件PDF Shaper Professional 14.2

PDF Shaper Professional是一款适用于Windows的程序,可让您在计算机上处理PDF文件。 要开始使用PDF Shaper Professional,您需要在Windows计算机上下载并安装该程序。您还应该有合适的驱动程序和编解码器来处理计算机上的文本和图形。 安装程序后&#…

常用运维工具之 WGCLOUD(国产软件)介绍

WGCLOUD是一款免费开源的运维监控软件,轻量高效,部署方便,上手简单,界面简单流畅 WGCLOUD是国产运维软件,可以适配大部分的信创环境,比如麒麟、统信等操作系统 WGCLOUD具体支持监控的操作系统如下&#x…

【全开源】小区入户安检系统(FastAdmin + Uni-APP)

守护家的每一道防线 一款基于FastAdmin Uni-APP开发的小区入户安检系统(前端可发布为小程序、H5、App)。可针对不同行业自定义安检项目,线下安检,线上留存(安检拍照/录像),提高安检人员安检效率。 一、引言&#xff…

php反序列化入门

一,php面向对象。 1.面向对象: 以“对象”伪中心的编程思想,把要解决的问题分解成对象,简单理解为套用模版,注重结果。 2.面向过程: 以“整体事件”为中心的编程思想,把解决问题的步骤分析出…

美洽工作台3.0,全新发布!

美洽工作台3.0,全新发布 想要效率翻倍,就要一步到位! 工作台 3.0,为效率而生 1. 更丰富的外观选择,让界面焕然一新,新增导航主题色选择,深色 Dark、浅色 Light 随意切换 2. 自定义你的专属导…

基于STM32的位置速度环PID控制伺服电机转动位置及程序说明

PID控制原理 PID控制原理是一种广泛应用于工业自动化和其他领域的控制算法。PID控制器的名字来源于其三个主要组成部分:比例(Proportional)、积分(Integral)和微分(Derivative)。PID控制器实现…

C++数组实现推箱子游戏

前言 我是三天打鱼两天晒网的闲人,今天跟着课程视频学习c的数组的运用. 准备好游戏用到的图片资源 代码逻辑实现 #include<iostream> #include<graphics.h> #include<string> #include<conio.h>using namespace std;//设置画布大小 #define SCREEN…

【人工智能】第六部分:ChatGPT的进一步发展和研究方向

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

C++ | Leetcode C++题解之第120题三角形最小路径和

题目&#xff1a; 题解&#xff1a; class Solution { public:int minimumTotal(vector<vector<int>>& triangle) {int n triangle.size();vector<int> f(n);f[0] triangle[0][0];for (int i 1; i < n; i) {f[i] f[i - 1] triangle[i][i];for (…

Jmeter的几种参数化方式

1.为什么要做参数化&#xff1f; 在用jmeter脚本进行压测的时候&#xff0c;为了更真实的模拟起到更好的效果&#xff0c;我们需要让参数动态变化起来&#xff0c;也就是参数化。通过参数化我们也可以更好、更灵活的维护我们的测试脚本。 2.参数化的方式 能够实现参数化的方式有…