数据结构与算法笔记:基础篇 - 栈:如何实现浏览器的前进和后退功能?

news2025/2/26 14:09:06

概述

浏览器的前进、后退功能,你肯定很熟悉吧?

当依次访问完一串页面 a-b-c 之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面 ba。当后退到页面 a,点击前进按钮,就可以重新查看页面 bc。但是,如果你后退到页面 b 后,点击新的页面 d,那就无法再通过前进、后退功能查看页面 c 了。

假设你是浏览器的开发工程师,你会如何实现这个功能呢?

这就要用到本章讲的 “栈” 这种数据结构了。


如何理解 “栈”?

关于 “栈”,有一个非常贴切的例子,就是一摞叠在一起的盘子。我们平时放盘子时,都是从下往上一个一个的放;取的时候,也是从上往下一个一个地依次取,不能从中间任意抽出。后进者先出,先进者后出,这就是典型的 “栈” 结构

从栈的操作特性上来看,栈是一种 “操作受限” 的线性表,只允许在一端插入和删除数据。

第一次接触这种数据类型时,我对它存在的意义产生了很大的疑惑。因为我觉得,相比数组和链表,栈给我的只有限制,并没有任何优势。那我直接使用数组或链表不就好了吗?为什么还要用这个 “操作受限” 的 “栈” 呢?

事实上,从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的接口,操作上的确灵活,但使用时就比较不可控,自然也就容易出错。

当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,这是应该首选 “栈” 这种数据结构

如何实现一个 “栈”?

从刚才栈的定义里,我们可以看出,栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。理解了栈的定义后,我们来看下如何用代码实现一个栈。

实际上,栈既可以用数组来实现,也可以用链表来实现。

  • 用数组实现的栈,我们叫做顺序栈
  • 用链表实现的栈,我们叫做链式栈

这里实现一个基于数组的顺序栈。

这段代码使用 Java 来实现,但不涉及任何高级语法,并且用了中文做了详细的注释。

public class ArrayStack {
    private String[] items; // 数组
    private int count; // 栈中元素个数
    private int n; // 栈大小
    
    public ArrayStack(int n) {
        this.items = new String[n];
        this.count = 0;
        this.n = n;
    }
    
    // 入栈操作
    public boolean push(String item) {
        if (count == n) {
            // 数组空间不够了,直接返回false,入栈失败
            return false;
        }
        items[count] = item;
        count++;
        return true;
    }
    
    // 出栈操作
    public String pop() {
        if (count == 0) {
            // 栈为空,直接返回null
            return null;
        }
        // 返回下标为count-1的数组元素,并且栈中元素个数减1
        String temp = items[count - 1];
        count--;
        return temp;
    }
}

了解了定义和基本操作,那它的操作时间、框架复杂度时多少呢?

不管是顺序栈还是链式栈,存储数据只需要一个大小为 n 的数组就够了。在入栈和出栈的过程中,只需要一两个临时变量存储空间,所以空间复杂度时 O ( 1 ) O(1) O(1)

注意,这里存储数据需要一个大小为 n 的数组,并不是说空间复杂度就是 O ( n ) O(n) O(n)。因为,这 n 个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是除了原本的数据存储空间外,算法运行还需要额外的存储空间。

框架复杂度分析是不是很简单?时间复杂度也不难。不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个人数据的操作,所以时间复杂度都是 O ( 1 ) O(1) O(1)

支持动态扩容的顺序栈

刚才那个基于数组实现的栈,是一个固定大小的栈,也就是说,在初始化栈时需要实现制定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储 next 指针,内存消耗相对较多。那我们如何基于数组实现一个可以支持动态扩容的栈呢?

还记得在数组那篇文章,是如何来支持一个支持动态扩容的数组吗?当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中的数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。

所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。

在这里插入图片描述
实际上,支持动态扩容的顺序栈,我们平时开发中并不常用到。讲这个的目的,主要还是希望带你练习一下前面将的复杂度分析方法。

你不用死记硬背入栈、出栈的时间复杂度,你需要掌握的是分析方法。能够自己分析才算是真正掌握了。现在就带你一起分析一下支持动态扩容的顺序栈的入栈、出栈的时间复杂度。

对于出栈操作来说,我们不会涉及内存的重新申请和数据搬移,所以出栈的时间复杂度还是 O ( 1 ) O(1) O(1)。但是对于入栈来说,当占用有空闲空间时,入栈操作的时间复杂度是 O ( 1 ) O(1) O(1)。但当空间不够时,就需要申请内存和数据搬移,所以时间复杂度编程了 O ( n ) O(n) O(n)

也就是说,对于入栈操作,最好情况时间复杂度是 O ( 1 ) O(1) O(1),最坏情况时间复杂度是 O ( n ) O(n) O(n)。那平均情况下的时间复杂度又是多少呢?还记得我们在复杂度那篇文章中讲的摊还分析法吗?这个入栈操作的平均时间复杂度可以用摊还分析法来分析。正好也借此再回顾一下摊还分析法。

为了分析的方便,我们需要预先做一些假设和定义:

  • 栈空间不够时,我们重新申请一个原来大小两倍的数组;
  • 为了简化分析,假设只有入栈操作没有出栈操作;
  • 定义不涉及内存搬移的入栈操作为 simple-push,时间复杂度为 O ( 1 ) O(1) O(1)

如果当前栈大小为 k,并且已满,当再有新的数据要入栈时,就需要重新申请 2 倍大小的内存,并且做 k 个数据的搬移操作,然后再入栈。

  • 我们将 k 个数据的搬移操作,均摊到前面 k 次的 simple-push 操作。
  • 均摊后,每个入栈只需要一次 simple-push 操作和 一次搬移操作。
  • 也就是说,均摊后,入栈操作的均摊时间复杂度就为 O ( 1 ) O(1) O(1)

在这里插入图片描述

通过这个例子的实战分析,也印制了前面讲的,均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈的操作时间复杂度都是 O ( 1 ) O(1) O(1),只有在个别时刻才会退化为 O ( n ) O(n) O(n),所以把好是多的入栈操作均摊到其他入栈操作上,平均情况下的耗时就接近 O ( 1 ) O(1) O(1)

栈在函数调用中的应用

接下来在看栈的另一个常见的应用场景,编译器如何利用栈来实现表达式求值

为了方便解释,我们将算术表达式简化为只包含加减乘除四则运算,比如:34+13*9+44-12/3。对于这个四则运算,人脑可以很快求接触答案,但是对于计算机来说,理解这个表达式本身就是个挺难得事儿。如果换作你,让你来实现这样一个表达式求值的功能,你会怎么做?

实际上,编译器就是通过两个栈来实现的。其中一个是保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式:

  • 当遇到数字,我们就直接压入操作数栈;
  • 当遇到运算符,就与运算符栈的栈顶元素进行比较。
    • 如果运算符 比 运算符栈顶元素的优先级高,就将当前的运算符压入栈;
    • 如果运算符 比 运算符栈顶元素的优先级低或者相同,从运算符中取栈顶运算符,从操作数栈的栈顶取 2 个操作数,然后进行计算,再把计算的记过压入操作数栈,继续比较。

我们将 3+5*8-6 这个表达式的计算过程画了一张图,你可以 结合图来理解上面的计算过程。
在这里插入图片描述

栈在括号匹配中的应用

除了用栈来实现表达式求值,还可以借助栈来检查表达式中的括号匹配。

假设表达式中只包含三种括号,圆括号 ()、花括号 {} 和方括号 [],并且它们可以任意嵌套。比如 {[]()[{}]}[{()}([])] 等都为合法格式,而 {[}()][({)] 问哦不合法格式。那我现在给你一个包含三种括号的表达式字符串,如何检查它们是否合法呢?

这里也可以使用栈来解决。用栈来保存未匹配的左括号,从左到右一次扫描字符串。当扫描到左括号时,将其压入栈中;当扫描到有括号时,从栈顶取出一个左括号。如果能够匹配,比如 () 匹配,[ 跟 ] 匹配,{} 匹配,则继续扫描剩下的字符串。如果扫描过程中,遇到不能匹配的右括号,或者栈中没有数据,则说明为非法格式。

当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法字符串;否则,说明有未匹配的左括号,为非法格式。

如何实现浏览器的前进、后退功能?

其实,用两个栈就可以完美解决。

我们使用两个栈,XY,我们把首次浏览的页面压入栈 X,当点击后退按钮时,再一次从栈 X 中出栈,并将出栈的数据依次放入栈 Y。当我们点击前进按钮时,依次从栈 Y 中取出数据,放入栈 X。当 X 中没有数据时,那就说明没有页面可以后退浏览了。当栈 Y 中没有数据,那就说明没有页面可以点击前进按钮浏览了。

比如,你顺序查看了 abc 三个页面,我们依次把 abc 压入栈 X,这个时候,两个栈的数据就是这个样子的。
在这里插入图片描述
当你通过后退按钮,从页面 c 退到页面 a 之后,我们就一次把 cb 从栈 X 中取出,并依次放入栈 Y。这个时候数据就是这样的。

在这里插入图片描述

这个时候,如果你又想看页面 b,于是你点击了前进按钮回到页面 b,我们就再把 b 从栈 Y 出栈,放入栈 X

在这里插入图片描述
这个时候,你通过页面 b 跳转到新的页面 d,页面 c 就无法再通过前进、后退按钮重复查看了,所以需要清空栈 Y

在这里插入图片描述

小结

栈是一种操作受限的数据结构,只支持入栈和出栈操作。后劲先出是它最大的特点。栈既可以通过数组实现,也可以通过链表来实现。不管基于数组还是链表,入栈、出栈的时间复杂度都为 O ( 1 ) O(1) O(1)。此外,还讲了一种支持动态扩容的顺序栈,你需要掌握其均摊时间复杂度的分析方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1719452.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C/S模型测试

1 1.1代码示例 #include<stdio.h> #include<stdio.h>#include <sys/types.h> /* See NOTES */ #include <sys/socket.h>#include <netinet/in.h> #include <netinet/ip.h> /* superset of previous */ #include <arpa/inet.…

004 仿muduo实现高性能服务器组件_Buffer模块与Socket模块的实现

​&#x1f308;个人主页&#xff1a;Fan_558 &#x1f525; 系列专栏&#xff1a;仿muduo &#x1f339;关注我&#x1f4aa;&#x1f3fb;带你学更多知识 文章目录 前言Buffer模块Socket模块 小结 前言 这章将会向你介绍仿muduo高性能服务器组件的buffer模块与socket模块的实…

12k Star!Continue:Github Copilot 开源本地版、开发效率和隐私保护兼得、丰富功能、LLM全覆盖!

原文链接&#xff1a;&#xff08;更好排版、视频播放、社群交流、最新AI开源项目、AI工具分享都在这个公众号&#xff01;&#xff09; 12k Star&#xff01;Continue&#xff1a;Github Copilot 开源本地版、开发效率和隐私保护兼得、丰富功能、LLM全覆盖&#xff01; &…

CSS--学习

CSS 1简介 1.1定义 层叠样式表 (Cascading Style Sheets&#xff0c;缩写为 CSS&#xff09;&#xff0c;是一种 样式表 语言&#xff0c;用来描述 HTML 文档的呈现&#xff08;美化内容&#xff09;。 1.2 特性 继承性 子级默认继承父级的文字控制属性。层叠性 相同的属性…

Elasticsearch 认证模拟题 - 5

一、题目 .在集群上有一个索引 food_ingredient&#xff0c;搜索需要满足以下要求&#xff1a; 三个字段 manufacturer&#xff0c;name&#xff0c;brand 都能匹配到文本 cake mix高亮 字段 name&#xff0c;并加标签排序&#xff0c;对字段 brand 正序&#xff0c;_score 降…

【Linux】Linux环境基础开发工具_3

文章目录 四、Linux环境基础开发工具2. vim3. gcc和g动静态库的理解 未完待续 四、Linux环境基础开发工具 2. vim vim 怎么批量化注释呢&#xff1f;最简单的方法就是在注释开头和结尾输入 /* 或 */ 。当然也可以使用快捷键&#xff1a; Ctrl v 按 hjkl 光标移动进行区域选择…

VR导航的实现原理、技术优势和应用场景

VR导航通过虚拟现实技术提供沉浸式环境&#xff0c;结合室内定位技术实现精准导航。目前&#xff0c;VR导航已在多个领域展现出其独特的价值和潜力&#xff0c;预示着智能导航系统的未来发展。 一、实现原理 VR导航技术依托于虚拟现实(VR)和室内定位系统。VR技术利用计算机模…

IMU状态预积分代码实现 —— IMU状态预积分类

IMU状态预积分代码实现 —— IMU状态预积分类 实现IMU状态预积分类 实现IMU状态预积分类 首先&#xff0c;实现预积分自身的结构。一个预积分类应该存储一下数据&#xff1a; 预积分的观测量 △ R ~ i j , △ v ~ i j , △ p ~ i j \bigtriangleup \tilde{R} _{ij},\bigtrian…

MySQL基础索引知识【索引创建删除 | MyISAM InnoDB引擎原理认识】

博客主页&#xff1a;花果山~程序猿-CSDN博客 文章分栏&#xff1a;MySQL之旅_花果山~程序猿的博客-CSDN博客 关注我一起学习&#xff0c;一起进步&#xff0c;一起探索编程的无限可能吧&#xff01;让我们一起努力&#xff0c;一起成长&#xff01; 目录 一&#xff0c;索引用…

数据在内存中的存储<C语言>

导言 在计算机中不同类型的数据在计算机内部存储形式各不相同&#xff0c;弄懂各种数据在计算机内部存储形式是有必要的&#xff0c;C语言的学习不能浮于表面&#xff0c;更要锻炼我们的“内功”&#xff0c;将来在写程序的时候遇见各种稀奇古怪的bug时&#xff0c;也便能迎刃而…

Beamer中二阶导、一阶导数的显示问题

Beamer中二阶导、一阶导数的显示问题 在beamer中表示 f ′ f f′和 f ′ ′ f f′′时发现导数符号距离 f f f很近 \documentclass{beamer} \usepackage{amsmath,amssymb}\begin{document} \begin{frame}\frametitle{Derivative}Derivative:\[f^{\prime}(x) \quad f \quad…

4月啤酒品类线上销售数据分析

近期&#xff0c;中国啤酒行业正处于一个重要的转型期。首先&#xff0c;消费者对高品质啤酒的需求不断增加&#xff0c;这推动了行业向高端化、场景化和社交化的方向发展。精酿啤酒作为这一趋势的代表&#xff0c;其发展势头强劲&#xff0c;不仅满足了消费者对品质化、个性化…

Java集合【超详细】2 -- Map、可变参数、Collections类

文章目录 一、Map集合1.1 Map集合概述和特点【理解】1.2 Map集合的基本功能【应用】1.3 Map集合的获取功能【应用】1.4 Map集合的两种遍历方式 二、HashMap集合2.1 HashMap集合概述和特点【理解】2.2 HashMap的组成、构造函数2.3 put、查找方法2.4 HashMap集合应用案例【应用】…

退出登录后选择记住登录状态回显用户名和密码

项目背景 : react ant 需求 : 退出登录后 , 选择了记住登录 , 回显用户名和密码 ; 未选择记住 , 则不回显用户名和密码 如图注意 : 发现一个鸡肋的问题 , 未勾选退出后 , 还是会回显 , 后来我查看了cookie和自己的逻辑都没问题 , 原来是因为我保存了密码 , 浏览器保存后自动渲…

C# 代码配置的艺术

文章目录 1、代码配置的定义及其在软件工程中的作用2、C# 代码配置的基本概念和工具3、代码配置的实践步骤4、实现代码配置使用属性&#xff08;Properties&#xff09;使用配置文件&#xff08;Config Files&#xff09;使用依赖注入&#xff08;Dependency Injection&#xf…

Echarts 让柱状图在图表中展示,离开X轴

文章目录 需求分析需求 分析 话不多说,直接源码展示 option = {title: {text: Waterfall Chart,subtext: Li

数据隐私重塑:Web3时代的隐私保护创新

随着数字化时代的不断深入&#xff0c;数据隐私保护已经成为了人们越来越关注的焦点之一。而在这个数字化时代的新篇章中&#xff0c;Web3技术作为下一代互联网的代表&#xff0c;正在为数据隐私保护带来全新的创新和可能性。本文将深入探讨数据隐私的重要性&#xff0c;Web3时…

数字孪生技术为何备受各行业青睐?

数字孪生技术近年来在各行业中受到越来越多的重视&#xff0c;这是因为它具备了显著的优势和广泛的应用前景。数字孪生是指利用数字化技术&#xff0c;在虚拟空间中创建一个与现实世界对应的虚拟模型&#xff0c;通过数据的实时交互和反馈&#xff0c;实现对物理实体的模拟和监…

嵌入式Linux复制剪切删除指令详解

指令操作 1. cp 复制指令 a. 用法&#xff1a;cp [ 选项 ] [ 源文件或目录 ] [ 目标文件或目录 ]&#xff1b; b. 用途&#xff1a;用于复制文件或目录&#xff1b; c. 通常情况下&#xff0c;复制的都不是空文件夹&#xff0c;所以直接使用 cp 复制空文件会失败&#xff0…

三体中的冯诺依曼

你叫冯诺依曼&#xff0c;是一位科学家。你无法形容眼前的现态&#xff0c;你不知道下一次自己葬身火海会是多久&#xff0c;你也不知道会不会下一秒就会被冰封&#xff0c;你唯一知道的&#xff0c;就是自己那寥寥无几的科学知识&#xff0c;你可能会抱着他们终身&#xff0c;…