一、人工原生动物优化器
人工原生动物优化器(Artificial Protozoa Optimizer ,APO)由Xiaopeng Wang等人于2024年提出,其灵感来自自然界中的原生动物。APO 模拟了原生动物的觅食、休眠和繁殖行为。
参考文献
[1]Wang X, Snášel V, Mirjalili S, et al. Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization[J]. Knowledge-Based Systems, 2024: 111737.
二、23个函数介绍
参考文献:
[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.
三、部分代码
close all ; clear clc Npop=30; Function_name='F7'; % Name of the test function that can be from F1 to F23 ( Tmax=300; [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_fit,Best_pos,Convergence_curve]=APO(Npop,Tmax,lb,ub,dim,fobj); figure('Position',[100 100 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(Convergence_curve,'Color','r','linewidth',3) title('Search space') xlabel('Iteration'); ylabel('Best score obtained so far'); axis tight grid on box on legend('APO') saveas(gca,[Function_name '.jpg']); display(['The best solution is ', num2str(Best_pos)]); display(['The best fitness value is ', num2str(Best_fit)]);