猫狗分类识别模型建立②模型建立

news2024/12/23 14:28:33

一、导入依赖库

pip install opencv-python  
pip install numpy  
pip install tensorflow
pip install keras

二、模型建立

'''
pip install opencv-python  
pip install numpy  
pip install tensorflow
pip install keras
'''
import os
import xml.etree.ElementTree as ET

import cv2
import numpy as np
from keras.layers import Input
from keras.models import Model
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers import Conv2D, Dense, Flatten, MaxPooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical

# 设置文件夹路径
images_dir = "imgs/"
annotations_dir = "imgs/"
num_classes = 2  # 设置类别总数
input_shape = (128, 128, 3)
# 模型名称
model_name = "dog_cat.keras"
# 用于存储图像数据和标签的列表
images = []
labels = []

"""
1 dog 狗
2 cat 猫
"""
# 假设我们有一个从标签文本到标签索引的映射字典
label_to_index = {
    "dog": 0,
    "cat": 1,
    # ... 添加其他类别
}

# 遍历文件夹加载数据
for filename in os.listdir(images_dir):
    if filename.endswith(".png"):
        image_path = os.path.join(images_dir, filename)
        annotation_path = os.path.join(annotations_dir, filename[:-4] + ".xml")

        # 读取图像
        image = cv2.imread(image_path)
        image = cv2.resize(image, (128, 128))  # 调整图像大小
        images.append(image)

        # 解析XML标注文件获取标签
        tree = ET.parse(annotation_path)
        root = tree.getroot()
        object_element = root.find("object")
        if object_element is not None:
            label_text = object_element.find("name").text
            label_index = label_to_index.get(label_text)
            if label_index is not None:
                labels.append(label_index)
            else:
                print(f"Warning: Unknown label '{label_text}', skipping.")

# 转换为NumPy数组并进行归一化
images = np.array(images) / 255.0
labels = np.array(labels)

# 确保所有的标签都是有效的整数
if labels.dtype != int:
    raise ValueError("Labels must contain only integers.")

labels = to_categorical(labels, num_classes=num_classes)  # 假设num_classes是类别的总数


# 使用Functional API定义模型
# 创建一个输入层,shape参数指定了输入数据的形状,input_shape是一个之前定义的变量,表示输入数据的维度。
inputs = Input(shape=input_shape)
# 下面的每一行都是通过一个层对数据进行处理,并将处理后的结果传递给下一个层。
# 对输入数据进行卷积操作,使用32个3x3的卷积核,并使用ReLU激活函数。结果赋值给变量x。
x = Conv2D(32, (3, 3), activation="relu")(inputs)
# 对x进行最大池化操作,池化窗口大小为2x2。这有助于减少数据的空间尺寸,从而减少计算量并提取更重要的特征。
x = MaxPooling2D(pool_size=(2, 2))(x)
# 再次进行卷积操作,这次使用64个3x3的卷积核,并继续使用ReLU激活函数。
x = Conv2D(128, (3, 3), activation="relu")(x)
# 再次进行最大池化操作,进一步减少数据的空间尺寸。
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Flatten()(x)  # 将多维的数据展平为一维,以便后续可以连接到全连接层(或称为密集层)。
# 创建一个全连接层,包含64个神经元,并使用ReLU激活函数。这一层可以进一步提取和组合特征。
x = Dense(128, activation="relu")(x)
# 创建一个输出层,神经元的数量与类别的数量(num_classes)相等。使用softmax激活函数,将输出转换为概率分布。
outputs = Dense(num_classes, activation="softmax")(x)
# 使用输入和输出来创建模型实例
model = Model(inputs=inputs, outputs=outputs)  # 通过指定输入和输出来定义模型的结构。
# 编译模型,指定优化器、损失函数和评估指标
# 使用Adam优化器、分类交叉熵损失函数,并监控准确性指标。
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])

# 使用图像数据和标签训练模型
# 使用fit方法训练模型,指定训练数据、训练轮次(epochs)和批处理大小(batch_size)。
model.fit(images, labels, epochs=55, batch_size=512)

# 保存训练好的模型到文件
# 将训练好的模型保存为HDF5文件,以便以后加载和使用。
model.save(model_name)
# keras.saving.save_model(model, "cnn_model.keras")
# model.save("cnn_model.h5")

三、文件结构及构建的模型

①文件结构

②建立后的模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1715631.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【制作100个unity游戏之27】使用unity复刻经典游戏《植物大战僵尸》,制作属于自己的植物大战僵尸随机版和杂交版6(附带项目源码)

最终效果 系列导航 文章目录 最终效果系列导航前言方法一、使用excel配置表excel转txt文本读取txt数据按配置信息生成僵尸 方法二、使用ScriptableObject 配置关卡信息源码结束语 前言 本节主要是推荐两种实现配置关卡信息,并按表生成僵尸和关卡波次 方法一、使用…

202474读书笔记|《我自我的田渠归来》——愿你拥有向上的力量,一切的好事都应该有权利发生

202474读书笔记|《我自我的田渠归来》——愿你拥有向上的力量 《我自我的田渠归来》作者张晓风,被称为华语散文温柔的一支笔,她的短文很有味道,角度奇特,温柔慈悲而敏锐。 很幸运遇到了这本书,以她的感受重新认识一些事…

手机拍照扫描成电子版,这三款软件助你轻松搞定!

在数字化时代,将手机拍照的内容快速转换为电子版已经成为许多人日常生活和工作中不可或缺的技能。无论是快速记录文档、合同,还是将纸质照片、笔记转化为电子格式,手机拍照扫描功能都为我们提供了极大的便利。今天,就为大家介绍三…

视频智能分析平台LntonCVS视频安防平台智慧农场应用方案

随着乡村振兴战略的深入实施,数字化发展已经成为农业生产的新方向和突破。在聚焦数字发展、探索数字应用、感受数字赋能的新发展模式下,“数字大田”融合了视频监控技术、5G通信技术、物联网技术和AI智能技术等先进技术,为春季农耕农管提供了…

失落的方舟 命运方舟台服封号严重 游戏封IP怎么办

步入《失落的方舟》(Lost Ark),这款由Smilegate精心打造的宏大规模在线角色扮演游戏(MMORPG),您将启程前往阿克拉西亚这片饱经沧桑的奇幻大陆,展开一场穿越时空的壮阔探索。在这里,一…

人脸识别——探索戴口罩对人脸识别算法的影响

1. 概述 人脸识别是一种机器学习技术,广泛应用于各种领域,包括出入境管制、电子设备安全登录、社区监控、学校考勤管理、工作场所考勤管理和刑事调查。然而,当 COVID-19 引发全球大流行时,戴口罩就成了日常生活中的必需品。广泛使…

实战解析:爬取音乐每日推荐歌单并自动分享

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、引言 二、准备阶段 三、实战步骤 四、总结与展望 一、引言 在数字化时代&#xff0c…

揭开神秘的“位移主题”面纱 no.16

Kafka中神秘的内部主题(Internal Topic)__consumer_offsets。 consumer_offsets在Kafka源码中有个更为正式的名字,叫*位移主题*,即Offsets Topic。为了方便今天的讨论,我将统一使用位移主题来指代consumer_offsets。需…

新疆 | 金石商砼效率革命背后的逻辑

走进标杆企业,感受名企力量,探寻学习优秀企业领先之道。 本期要跟砼行们推介的标杆企业是新疆砼行业的龙头企业:新疆兵团建工金石商品混凝土有限责任公司(以下简称:新疆金石)。 从年产80万方到120万方&am…

OpenMv图片预处理

本博客讲述的是获取一张图片首先对图像进行处理,比如畸形矫正,图像滤波等操作。 1.histeq()自适应直方图均衡 # 自适应直方图均衡例子 # # 此示例展示了如何使用自适应直方图均衡来改善图像中的对比度。 #自适应直方图均衡将图像分割成区域,然后均衡这些区域中的直方图,…

React基础知识笔记

Reat简介 React:用于构建用户界面的 JavaScript 库。由 Facebook 开发且开源。是一个将视图渲染为html视图的开源库 第一章:React入门 相关js库 react.development.js :React 核心库react-dom.development.js :提供 DOM 操作的…

5月岚庭工人大会“安全就是效率、形象即是品质”

2024年5月18日、19日岚庭一月一期的“产业工人大会”和“工程大会”圆满举行初夏正当时,此次大会主要围绕“安全”与“形象”展开六场专题培训只为精益求精产业工人和装修管家全体到场。 岚庭 以绝对【安全】护家护园 安全就是生命,违章就是事故&#x…

想知道股指期货和期权有什么不同吗?

市场上目前有中金所的沪深300ETF,中证500和中证1000股指期货,期权市场有上证50ETF,沪深300etf和中证500ETF期权,股指期货和期权在买卖双方的权利义务、风险收益特征、保证金制度、上市合约数量等方面均有较大区别,下文…

地市新质生产力最新测算数据集-2005至2024年(基于工作BG)

数据简介:参考肖有智等(2024)的做法,查找各个地级市年工作BG进行词频分析,加总得到新质生产力总词频数据。数据来源:工作BG 时间范围:2005-2024年 数据范围:各地级市包含指标&…

最新!2023年台湾10米DEM地形瓦片数据

上次更新谷歌倾斜摄影转换生成OSGB瓦片V1.1版本,使用该版本生产了台北、台中、桃园三个地方的倾斜摄影OSGB数据,在OSGB可视化软件中进行展示,可视化效果和加载效率俱佳。已经很久没更新地形瓦片数据,主要是热点地区的原始数据没有…

竹云董事长在第二届ICT技术发展与企业数字化转型高峰论坛作主题演讲

5月25日,由中国服务贸易协会指导,中国服务贸易协会信息技术服务委员会主办的 “第二届ICT技术发展与企业数字化转型高峰论坛” 在北京隆重召开。 本次论坛以 “数据驱动,AI引领,打造新质生产力” 为主题,特邀业内200余…

el-pagination在删除非第一页的最后一条数据遇到的问题

文章目录 前言一、问题展示二、解决方案三、源码解析1、elementui2、elementplus 总结 前言 这个问题是element-ui中的问题,可以从源码中看出来,虽然页码更新了,active也是对的,但是未调用current-change的方法,这里就…

tinymce富文本编辑器使用

安卓富文本编辑器&#xff1a;npm i tinymce/tinymce-vue 当前项目中富文本是放在一个dialog中&#xff0c;因此部分样式会有层叠问题&#xff0c;该组件样式部分不添加scope。这里图片上传只是前端静态数据展示收集。 <template><div class"desc-editor"…

【算法工程师】(三年面试五年模拟版)总结

写在前面&#xff1a; WeThinkIn &#xff08;公主号&#xff09; 学习经验分享 目录 1、机器学习基础 2、深度学习基础 2.1 1*1卷积的作用 注&#xff1a;卷积核的个数对应输出的通道数&#xff08;channels&#xff09;&#xff0c;比如输入6*6*64&#xff0c;卷积核1…

C语言数据结构堆排序、向上调整和向下调整的时间复杂度的计算、TopK问题等的介绍

文章目录 前言一、堆排序1. 排升序&#xff08;1&#xff09;. 建堆&#xff08;2&#xff09;. 排序 2. 拍降序&#xff08;1&#xff09;. 建堆&#xff08;2&#xff09;. 排序 二、建堆时间复杂度的计算1. 向上调整时间复杂度2. 向下调整时间复杂度 三、TopK问题总结 前言 …