一、设计描述
本设计以STM32MP157A单片机为核心控制器,加上其他的模块一起组成基于单片机的音乐盒的整个系统,通过不同频率的PWM使蜂鸣器播放音乐,通过按键中断实现歌曲切换,音量调节,定时器中断实现播放速度调节,LED灯也会随着音乐而闪烁。
硬件:STM32MP157A
软件:STM32CUBEIDE
音乐盒的功能:
1、能稳定的播放出音乐,满足使用者对音乐盒的需求。
2、具有开始和暂停的功能,按下暂停键音乐会停止播放,再按下开始,音乐会接着播放。
3、可以通过按下切换键播放下一首歌曲。
4、可以通过按下变速键,实现歌曲由1倍数-1.2倍数-1.5倍数-2倍数-0.8倍数-0.6倍数-1倍数的切换。
5、可以通过按下音量键使音量逐渐变大,到达阈值之后音量变为0实现静音,再按又会逐渐增大。
6、led会随着歌曲的音调而变化。
二、基本配置信息
通常情况可以采用HAL_Delay()来实现一个音的持续时间,我们将其换成定时器,便于控制。再就是PWM控制蜂鸣器,我们需要设置对应的高中低音。
定时器:使用TIM2配置出一个0.1s的中断,我们将一个半拍按0.5秒算,这样我们只需要改变 对tim2中断的计数来改变播放速度。
PWM蜂鸣器:我们先了解一个公式 || ( (PSC+1)/CLK ) * ( ARR+1 ) = 1 / f || f(频率)
clk:系统时钟(64MHZ)(STM32MP157A)我们在程序中会更改ARR来改变频率,所以我们需要事先确定一个合适的PSC。 频率:一秒执行多少次。
我们取 1/f 中 取中音1频率 1/523.3 = 0.00191094974202178482705904834703
很长一串小数,可能还没算完,那我们可以取小数点后五位数据。我们以 0.00001为基础也就是让
(PSC+1)/CLK ) = 0.00001 已知clk = 64*10^6 得出PSC + 1 = 640
那么ARR是用于干什么的呢。1/523.3 就约等于 0.00001 *( ARR+1 ) 那么 ARR+1就等于191。
总结一下:我们通过计算得出一个基数,PSC配置为 640 - 1 ,明显ARR在最初时没有实际效果,因为音频不同相应的ARR也不同(这里简易 ARR = 999,不建议设置太大)
音乐盒 架构图
三、STM32CUBEIDE配置
1、定时器--100ms
2、PWM配置(蜂鸣器 -- PB6)
3、按键极LED
4、NVIC
四、程序编写
1. 基础变量
因为有许多中断,所以将在stm32mp1xx_it.c 和 main.c 之间交换信息。
stm32mp1xx_it.c 基础变量
int time_100ms_cnt = 0; //0.1s计数器
int Beat_speed = 5; //节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0; //实际执行的节拍数
int Beat_num = 2; //这个一个音需要多少个 半拍
int flag = 0; //当其等于 1 时,表示一个音结束
int EN = 0; //使能信号,用于开启整个音乐盒
int list = 0; //音乐列表
int list_max = 0; //音乐总数
int Low_volume = 5; //音量大小
#define Low_volume_cnt 3 //音量大小增加数
main.c基础变量
extern int time_100ms_cnt = 0; //0.1s计数器
extern int Beat_speed = 5; //节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n = 0; //实际执行的节拍数
extern int Beat_num = 2; //这个一个音需要多少个 半拍
extern int flag = 0; //当其等于 1 时,表示一个音结束
extern int EN = 0; //使能信号,用于开启整个音乐盒
extern int list = 0; //音乐列表
extern int list_max = 0; //音乐总数
extern int Low_volume = 5; //音量大小
2. LED随音乐跳动
//将LED设置成全灭
void LED_RESET(){
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
}
void LED(int i){
if(i >= 1) HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
if(i >= 2) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
if(i >= 3) HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11,GPIO_PIN_SET);
if(i >= 4) HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
}
//随音节输入,改变LED状�??
void LED_BEEP(int i){
LED_RESET();
switch(i){
case 1:{
LED(1);
break;
}
case 2:{
LED(1);
break;
}
case 3:{
LED(2);
break;
}
case 4:{
LED(2);
break;
}
case 5:{
LED(3);
break;
}
case 6:{
LED(3);
break;
}
case 7:{
LED(4);
break;
}
default:{
LED_RESET();
break;
}
}
}
3. 配置低中高音
int tone[3][8];
//初始化高中低音频率
void tone_init(){
tone[1][0] = 0; //不执行音乐
tone[1][1] = 191;
tone[1][2] = 170;
tone[1][3] = 151;
tone[1][4] = 143;
tone[1][5] = 127;
tone[1][6] = 113;
tone[1][7] = 101;
// 低音 (Low)
for (int i = 0; i < 8; i++) {
tone[0][i] = tone[1][i] * 2; // 只是低音 近似的值
}
// 高音 (High)
for (int i = 0; i < 8; i++) {
tone[2][i] = tone[1][i] / 2; // 只是高音 近似的值
}
}
4.乐谱结构体
#define MAX_unit_num 200 //�??大乐谱数�??
//创建结构体保存乐�??
struct music_unit{
char name[50]; //乐谱名称
int unit[MAX_unit_num]; //发什么音
int unit_HL[MAX_unit_num]; //发高音或者其�??
int time[MAX_unit_num]; //发音时间
//int time_4[MAX_unit_num]; //判断是否�??1/4�??
int num; //记录有多少个
}music[25];
5. 编写乐谱
//创建乐谱 返回有多少首音乐
int music_init(){
int cnt = 0;
//第一首音�?? 生日快乐
strcpy(music[0].name, "生日快乐"); // 使用strcpy复制字符�?? 给音乐命�??
int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
5,5,6,3,1,7, 6,4,4,3,1,2,1,
0,0}; //基础乐谱
int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
2,2,2,2,2,2, 2,2,2,2,2,2,3,
1,1}; //乐谱节拍
music[0].num = 29; //乐谱总数
int music0_unit_HL[29] = {1,1,
0,0,0,0,1,0, 0,0,0,0,1,1,
0,0,1,1,1,0, 0,1,1,1,1,1,1,
1,1}; //乐谱全为中音
//第二首音�?? �??闪一闪亮晶晶
cnt++;
strcpy(music[1].name, "�??闪一闪亮晶晶"); // 使用strcpy复制字符�?? 给音乐命�??
int music1_unit[44] = {0,
1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
0}; //基础乐谱
int music1_time[44] = {2,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2}; //乐谱节拍
int music1_unit_HL[44] =
{1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1}; //乐谱全为中音
music[1].num = 44; //乐谱总数
//第三首音�?? 两只老虎
cnt++;
strcpy(music[2].name, "两只老虎"); // 使用strcpy复制字符�?? 给音乐命�??
int music2_unit[38] = {0,
1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
1,5,1,1, 0}; //基础乐谱
int music2_time[38] = {2,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
1,1,1,2, 2}; //乐谱节拍
int music2_unit_HL[38] =
{1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
1,0,1,1, 1}; //乐谱�?? 中音
music[2].num = 38; //乐谱总数
//第四首音�?? 青花瓷片�??
cnt++;
strcpy(music[3].name, "青花瓷片选"); // 使用strcpy复制字符�?? 给音乐命�??
int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0}; //基础乐谱
int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1}; //乐谱节拍
for(int i =0;i<100;i++)
music3_time[i] = music3_time[i]+1;
int music3_unit_HL[100] =
{ 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; //乐谱�?? 中音
music[3].num = 100; //乐谱总数
for (int i = 0; i < MAX_unit_num; i++) {
//将乐谱保存进结构�??
if(i<music[0].num){//确保数据正确
music[0].unit[i] =music0_unit[i];
music[0].unit_HL[i] =music0_unit_HL[i];
music[0].time[i] =music0_time[i];
}
//将乐谱保存进结构�??
if(i<music[1].num){//确保数据正确
music[1].unit[i] =music1_unit[i];
music[1].unit_HL[i] =music1_unit_HL[i];
music[1].time[i] =music1_time[i];
}
//将乐谱保存进结构�??
if(i<music[2].num){//确保数据正确
music[2].unit[i] =music2_unit[i];
music[2].unit_HL[i] =music2_unit_HL[i];
music[2].time[i] =music2_time[i];
}
//将乐谱保存进结构�??
if(i<music[3].num){//确保数据正确
music[3].unit[i] =music3_unit[i];
music[3].unit_HL[i] =music3_unit_HL[i];
music[3].time[i] =music3_time[i];
}
}
return cnt;
}
6. 音乐实现函数
//播放音乐 N首音乐 音量 X 0 - 10
void play_music(int n, int x){
static int ni = 0; //用于判断 是否换了音乐
static int cnt = 0; //记录播放到哪一个 音节
if(ni != n ){//如果音乐换了
ni = n;
cnt = 0;
__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
HAL_Delay(1000);//
}
//
int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]]; //获取频率
if(flag == 1){ //接受到一个音节结束
flag = 0; //复位
Beat_num = music[n].time[cnt]; //这个音需要多少个半拍
LED_BEEP(music[n].unit[cnt]); //LED随音节变动
if(music[n].time[cnt] == 0){// 后面添加的 1/4 拍
Beat_speed_n = Beat_speed /2;
}
else{//如果没有1/4拍
Beat_speed_n = Beat_speed;
}
__HAL_TIM_SET_AUTORELOAD(&htim4,value); //自动加载频率
cnt ++; //可进行下一次音节
if(cnt >= music[n].num){ //如果一首音乐播放完毕
cnt = 0;//重新播放
//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
//HAL_Delay(500);//
}
}
//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}
7. 全部中断
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0)//确保数据稳定
{
//每次按下解决 音量�?? Low_volume_cnt
Low_volume = Low_volume + Low_volume_cnt;
if(Low_volume >= 10)
Low_volume = 0;
}
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}
/**
* @brief This function handles EXTI line1 interrupt.
*/
void EXTI1_IRQHandler(void)
{
/* USER CODE BEGIN EXTI1_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0)//确保数据稳定
{
//控制音乐播放的�?�度
static int i = 0;
i++;
//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
switch(i){
case 0:{
Beat_speed = 5; //0.5s半个节拍,正常+�?�度
break;
}
case 1:{
Beat_speed = 4; //1.2倍数
break;
}
case 2:{
Beat_speed = 3; //约等�?? 1.5倍数
break;
}
case 3:{
Beat_speed = 1; //约等�?? 2 倍数
break;
}
case 4:{
Beat_speed = 6; //约等�?? 0.8 倍数
break;
}
case 5:{
Beat_speed = 7; //约等�?? 0.6 倍数
break;
}
default:{
Beat_speed = 5; //0.5s半个节拍,正常�?�度
i=0;
break;
}
}
}
/* USER CODE END EXTI1_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
/* USER CODE BEGIN EXTI1_IRQn 1 */
/* USER CODE END EXTI1_IRQn 1 */
}
/**
* @brief This function handles EXTI line2 interrupt.
*/
void EXTI2_IRQHandler(void)
{
/* USER CODE BEGIN EXTI2_IRQn 0 */
//按下�??次音乐进入下�??�??
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0)//确保数据稳定
{
list++;
if(list > list_max){
list = 0;
}
}
/* USER CODE END EXTI2_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
/* USER CODE BEGIN EXTI2_IRQn 1 */
/* USER CODE END EXTI2_IRQn 1 */
}
/**
* @brief This function handles TIM2 global interrupt.
*/
void TIM2_IRQHandler(void)
{
/* USER CODE BEGIN TIM2_IRQn 0 */
if(EN == 1)
time_100ms_cnt++;
else
time_100ms_cnt = time_100ms_cnt; //其余状�?�不计数
if(time_100ms_cnt >= Beat_speed_n * Beat_num){ //这个音节结束
time_100ms_cnt = 0;
flag = 1; //发�?�音节结束信�??
}
/* USER CODE END TIM2_IRQn 0 */
HAL_TIM_IRQHandler(&htim2);
/* USER CODE BEGIN TIM2_IRQn 1 */
/* USER CODE END TIM2_IRQn 1 */
}
/**
* @brief This function handles EXTI line9 interrupt.
*/
void EXTI9_IRQHandler(void)
{
/* USER CODE BEGIN EXTI9_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOF, GPIO_PIN_9) == 0)//确保数据稳定
EN = !EN;
/* USER CODE END EXTI9_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
/* USER CODE BEGIN EXTI9_IRQn 1 */
/* USER CODE END EXTI9_IRQn 1 */
}
五、总代码
main.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2024 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#include <string.h> // 引入strcpy函数�?�?的头文件
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim4;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM4_Init(void);
static void MX_TIM2_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//将LED设置成全�??
void LED_RESET(){
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
}
void LED(int i){
if(i >= 1) HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
if(i >= 2) HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
if(i >= 3) HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11,GPIO_PIN_SET);
if(i >= 4) HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
}
//随音节输入,改变LED状�??
void LED_BEEP(int i){
LED_RESET();
switch(i){
case 1:{
LED(1);
break;
}
case 2:{
LED(1);
break;
}
case 3:{
LED(2);
break;
}
case 4:{
LED(2);
break;
}
case 5:{
LED(3);
break;
}
case 6:{
LED(3);
break;
}
case 7:{
LED(4);
break;
}
default:{
LED_RESET();
break;
}
}
}
extern int time_100ms_cnt; //0.1s计数�??
extern int Beat_speed; //节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n; //实际执行的节�??
extern int Beat_num; //这个�?? �??要多少个 半拍
extern int flag; //当其等于 1 时,表示�??个音结束
extern int EN; //使能信号,用于开启整个音�??
extern int list ; //音乐列表
extern int list_max ; //音乐总数
extern int Low_volume; //音量大小
int tone[3][8];
//初始化高中低�??
void tone_init(){
tone[1][0] = 0; //不执�??
tone[1][1] = 191;
tone[1][2] = 170;
tone[1][3] = 151;
tone[1][4] = 143;
tone[1][5] = 127;
tone[1][6] = 113;
tone[1][7] = 101;
// 低音 (Low)
for (int i = 0; i < 8; i++) {
tone[0][i] = tone[1][i] * 2; // 只是�??个近似的值,实际值可能不�??
}
// 高音 (High)
for (int i = 0; i < 8; i++) {
tone[2][i] = tone[1][i] / 2; // 只是�??个近似的值,实际值可能不�??
}
}
#define MAX_unit_num 200 //�??大乐谱数�??
//创建结构体保存乐�??
struct music_unit{
char name[50]; //乐谱名称
int unit[MAX_unit_num]; //发什么音
int unit_HL[MAX_unit_num]; //发高音或者其�??
int time[MAX_unit_num]; //发音时间
//int time_4[MAX_unit_num]; //判断是否�??1/4�??
int num; //记录有多少个
}music[25];
//创建乐谱 返回有多少首音乐
int music_init(){
int cnt = 0;
//第一首音�?? 生日快乐
strcpy(music[0].name, "生日快乐"); // 使用strcpy复制字符�?? 给音乐命�??
int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
5,5,6,3,1,7, 6,4,4,3,1,2,1,
0,0}; //基础乐谱
int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
2,2,2,2,2,2, 2,2,2,2,2,2,3,
1,1}; //乐谱节拍
music[0].num = 29; //乐谱总数
int music0_unit_HL[29] = {1,1,
0,0,0,0,1,0, 0,0,0,0,1,1,
0,0,1,1,1,0, 0,1,1,1,1,1,1,
1,1}; //乐谱全为中音
//第二首音�?? �??闪一闪亮晶晶
cnt++;
strcpy(music[1].name, "�??闪一闪亮晶晶"); // 使用strcpy复制字符�?? 给音乐命�??
int music1_unit[44] = {0,
1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
0}; //基础乐谱
int music1_time[44] = {2,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
2}; //乐谱节拍
int music1_unit_HL[44] =
{1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
1}; //乐谱全为中音
music[1].num = 44; //乐谱总数
//第三首音�?? 两只老虎
cnt++;
strcpy(music[2].name, "两只老虎"); // 使用strcpy复制字符�?? 给音乐命�??
int music2_unit[38] = {0,
1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
1,5,1,1, 0}; //基础乐谱
int music2_time[38] = {2,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
1,1,1,2, 2}; //乐谱节拍
int music2_unit_HL[38] =
{1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
1,0,1,1, 1}; //乐谱�?? 中音
music[2].num = 38; //乐谱总数
//第四首音�?? 青花瓷片�??
cnt++;
strcpy(music[3].name, "青花瓷片选"); // 使用strcpy复制字符�?? 给音乐命�??
int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0}; //基础乐谱
int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1}; //乐谱节拍
for(int i =0;i<100;i++)
music3_time[i] = music3_time[i]+1;
int music3_unit_HL[100] =
{ 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; //乐谱�?? 中音
music[3].num = 100; //乐谱总数
for (int i = 0; i < MAX_unit_num; i++) {
//将乐谱保存进结构�??
if(i<music[0].num){//确保数据正确
music[0].unit[i] =music0_unit[i];
music[0].unit_HL[i] =music0_unit_HL[i];
music[0].time[i] =music0_time[i];
}
//将乐谱保存进结构�??
if(i<music[1].num){//确保数据正确
music[1].unit[i] =music1_unit[i];
music[1].unit_HL[i] =music1_unit_HL[i];
music[1].time[i] =music1_time[i];
}
//将乐谱保存进结构�??
if(i<music[2].num){//确保数据正确
music[2].unit[i] =music2_unit[i];
music[2].unit_HL[i] =music2_unit_HL[i];
music[2].time[i] =music2_time[i];
}
//将乐谱保存进结构�??
if(i<music[3].num){//确保数据正确
music[3].unit[i] =music3_unit[i];
music[3].unit_HL[i] =music3_unit_HL[i];
music[3].time[i] =music3_time[i];
}
}
return cnt;
}
//播放�?? N首音�?? 音量�?? X 0 - 100
void play_music(int n, int x){
static int ni = 0; //用于判断 是否换了音乐
static int cnt = 0; //记录播放到哪�??�?? 音节
if(ni != n ){//如果音乐换了
ni = n;
cnt = 0;
__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
HAL_Delay(1000);//
}
//
int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]]; //获取频率
if(flag == 1){ //接受到一个音节结�??
flag = 0; //复位
Beat_num = music[n].time[cnt]; //这个音需要多少个半拍
LED_BEEP(music[n].unit[cnt]); //LED随音节变动�?�变�??
if(music[n].time[cnt] == 0){//如果�?? 1/4�??
Beat_speed_n = Beat_speed /2;
}
else{//如果没有1/4�??
Beat_speed_n = Beat_speed;
}
//if(value != 0)//如果有频率�?�执行,没有者只更新 时间�??
__HAL_TIM_SET_AUTORELOAD(&htim4,value); //自动加载频率�??
cnt ++; //可进行下�??次音�??
if(cnt >= music[n].num){ //如果�??个音节播放完�??
cnt = 0;//重新播放
//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
//HAL_Delay(500);//
}
}
//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
if(IS_ENGINEERING_BOOT_MODE())
{
/* Configure the system clock */
SystemClock_Config();
}
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM4_Init();
MX_TIM2_Init();
/* USER CODE BEGIN 2 */
tone_init(); //初始化音量频�??
list_max = music_init();//更新乐谱
HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1); //�??启PWM
HAL_TIM_Base_Start_IT(&htim2); //�??启定时器�??
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
if(EN == 1)//�??启音�??
play_music(list,Low_volume);
else
__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
//EN = 1;
//play_music(0,5);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** RCC Clock Config
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
|RCC_CLOCKTYPE_PCLK5;
RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 6400-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 1000-1;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM4 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM4_Init(void)
{
/* USER CODE BEGIN TIM4_Init 0 */
/* USER CODE END TIM4_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM4_Init 1 */
/* USER CODE END TIM4_Init 1 */
htim4.Instance = TIM4;
htim4.Init.Prescaler = 640-1;
htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
htim4.Init.Period = 100-1;
htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM4_Init 2 */
/* USER CODE END TIM4_Init 2 */
HAL_TIM_MspPostInit(&htim4);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1|GPIO_PIN_6, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
/*Configure GPIO pins : PF1 PF6 */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_6;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pin : PC7 */
GPIO_InitStruct.Pin = GPIO_PIN_7;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PI11 PI10 */
GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/*Configure GPIO pins : PG2 PG0 PG1 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
/*Configure GPIO pin : PE9 */
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
HAL_NVIC_SetPriority(EXTI1_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(EXTI1_IRQn);
HAL_NVIC_SetPriority(EXTI2_IRQn, 2, 0);
HAL_NVIC_EnableIRQ(EXTI2_IRQn);
HAL_NVIC_SetPriority(EXTI9_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(EXTI9_IRQn);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
stm32mp1xx_it.c
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file stm32mp1xx_it.c
* @brief Interrupt Service Routines.
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2024 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32mp1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
/* USER CODE END TD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int time_100ms_cnt = 0; //0.1s计数�??
int Beat_speed = 5; //节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0; //实际执行的节�??
int Beat_num = 2; //这个�?? �??要多少就 半拍
int flag = 0; //当其等于 1 时,表示�??个音结束
int EN = 0; //使能信号,用于开启整个音�??
int list = 0; //音乐列表
int list_max = 0; //音乐总数
int Low_volume = 5; //音量大小
#define Low_volume_cnt 3 //音量大小�??10增加
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
extern TIM_HandleTypeDef htim2;
/* USER CODE BEGIN EV */
/* USER CODE END EV */
/******************************************************************************/
/* Cortex-M4 Processor Interruption and Exception Handlers */
/******************************************************************************/
/**
* @brief This function handles Non maskable interrupt.
*/
void NMI_Handler(void)
{
/* USER CODE BEGIN NonMaskableInt_IRQn 0 */
/* USER CODE END NonMaskableInt_IRQn 0 */
/* USER CODE BEGIN NonMaskableInt_IRQn 1 */
while (1)
{
}
/* USER CODE END NonMaskableInt_IRQn 1 */
}
/**
* @brief This function handles Hard fault interrupt.
*/
void HardFault_Handler(void)
{
/* USER CODE BEGIN HardFault_IRQn 0 */
/* USER CODE END HardFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_HardFault_IRQn 0 */
/* USER CODE END W1_HardFault_IRQn 0 */
}
}
/**
* @brief This function handles Memory management fault.
*/
void MemManage_Handler(void)
{
/* USER CODE BEGIN MemoryManagement_IRQn 0 */
/* USER CODE END MemoryManagement_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
/* USER CODE END W1_MemoryManagement_IRQn 0 */
}
}
/**
* @brief This function handles Pre-fetch fault, memory access fault.
*/
void BusFault_Handler(void)
{
/* USER CODE BEGIN BusFault_IRQn 0 */
/* USER CODE END BusFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_BusFault_IRQn 0 */
/* USER CODE END W1_BusFault_IRQn 0 */
}
}
/**
* @brief This function handles Undefined instruction or illegal state.
*/
void UsageFault_Handler(void)
{
/* USER CODE BEGIN UsageFault_IRQn 0 */
/* USER CODE END UsageFault_IRQn 0 */
while (1)
{
/* USER CODE BEGIN W1_UsageFault_IRQn 0 */
/* USER CODE END W1_UsageFault_IRQn 0 */
}
}
/**
* @brief This function handles System service call via SWI instruction.
*/
void SVC_Handler(void)
{
/* USER CODE BEGIN SVCall_IRQn 0 */
/* USER CODE END SVCall_IRQn 0 */
/* USER CODE BEGIN SVCall_IRQn 1 */
/* USER CODE END SVCall_IRQn 1 */
}
/**
* @brief This function handles Debug monitor.
*/
void DebugMon_Handler(void)
{
/* USER CODE BEGIN DebugMonitor_IRQn 0 */
/* USER CODE END DebugMonitor_IRQn 0 */
/* USER CODE BEGIN DebugMonitor_IRQn 1 */
/* USER CODE END DebugMonitor_IRQn 1 */
}
/**
* @brief This function handles Pendable request for system service.
*/
void PendSV_Handler(void)
{
/* USER CODE BEGIN PendSV_IRQn 0 */
/* USER CODE END PendSV_IRQn 0 */
/* USER CODE BEGIN PendSV_IRQn 1 */
/* USER CODE END PendSV_IRQn 1 */
}
/**
* @brief This function handles System tick timer.
*/
void SysTick_Handler(void)
{
/* USER CODE BEGIN SysTick_IRQn 0 */
/* USER CODE END SysTick_IRQn 0 */
HAL_IncTick();
/* USER CODE BEGIN SysTick_IRQn 1 */
/* USER CODE END SysTick_IRQn 1 */
}
/******************************************************************************/
/* STM32MP1xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */
/* For the available peripheral interrupt handler names, */
/* please refer to the startup file (startup_stm32mp1xx.s). */
/******************************************************************************/
/**
* @brief This function handles EXTI line0 interrupt.
*/
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0)//确保数据稳定
{
//每次按下解决 音量�?? Low_volume_cnt
Low_volume = Low_volume + Low_volume_cnt;
if(Low_volume >= 10)
Low_volume = 0;
}
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}
/**
* @brief This function handles EXTI line1 interrupt.
*/
void EXTI1_IRQHandler(void)
{
/* USER CODE BEGIN EXTI1_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0)//确保数据稳定
{
//控制音乐播放的�?�度
static int i = 0;
i++;
//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
switch(i){
case 0:{
Beat_speed = 5; //0.5s半个节拍,正常+�?�度
break;
}
case 1:{
Beat_speed = 4; //1.2倍数
break;
}
case 2:{
Beat_speed = 3; //约等�?? 1.5倍数
break;
}
case 3:{
Beat_speed = 1; //约等�?? 2 倍数
break;
}
case 4:{
Beat_speed = 6; //约等�?? 0.8 倍数
break;
}
case 5:{
Beat_speed = 7; //约等�?? 0.6 倍数
break;
}
default:{
Beat_speed = 5; //0.5s半个节拍,正常�?�度
i=0;
break;
}
}
}
/* USER CODE END EXTI1_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
/* USER CODE BEGIN EXTI1_IRQn 1 */
/* USER CODE END EXTI1_IRQn 1 */
}
/**
* @brief This function handles EXTI line2 interrupt.
*/
void EXTI2_IRQHandler(void)
{
/* USER CODE BEGIN EXTI2_IRQn 0 */
//按下�??次音乐进入下�??�??
if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0)//确保数据稳定
{
list++;
if(list > list_max){
list = 0;
}
}
/* USER CODE END EXTI2_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
/* USER CODE BEGIN EXTI2_IRQn 1 */
/* USER CODE END EXTI2_IRQn 1 */
}
/**
* @brief This function handles TIM2 global interrupt.
*/
void TIM2_IRQHandler(void)
{
/* USER CODE BEGIN TIM2_IRQn 0 */
if(EN == 1)
time_100ms_cnt++;
else
time_100ms_cnt = time_100ms_cnt; //其余状�?�不计数
if(time_100ms_cnt >= Beat_speed_n * Beat_num){ //这个音节结束
time_100ms_cnt = 0;
flag = 1; //发�?�音节结束信�??
}
/* USER CODE END TIM2_IRQn 0 */
HAL_TIM_IRQHandler(&htim2);
/* USER CODE BEGIN TIM2_IRQn 1 */
/* USER CODE END TIM2_IRQn 1 */
}
/**
* @brief This function handles EXTI line9 interrupt.
*/
void EXTI9_IRQHandler(void)
{
/* USER CODE BEGIN EXTI9_IRQn 0 */
if(HAL_GPIO_ReadPin(GPIOF, GPIO_PIN_9) == 0)//确保数据稳定
EN = !EN;
/* USER CODE END EXTI9_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
/* USER CODE BEGIN EXTI9_IRQn 1 */
/* USER CODE END EXTI9_IRQn 1 */
}
/**
* @brief This function handles RCC wake-up interrupt.
*/
void RCC_WAKEUP_IRQHandler(void)
{
/* USER CODE BEGIN RCC_WAKEUP_IRQn 0 */
/* USER CODE END RCC_WAKEUP_IRQn 0 */
HAL_RCC_WAKEUP_IRQHandler();
/* USER CODE BEGIN RCC_WAKEUP_IRQn 1 */
/* USER CODE END RCC_WAKEUP_IRQn 1 */
}
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
六、总结
这是一个基于STM32MP157A单片机的音乐盒设计较为全面和详细。主要包括以下几个方面:
-
硬件设计:
- 使用STM32MP157A单片机作为核心控制器
- 采用TIM2定时器产生0.1s中断控制节拍
- 使用TIM4输出PWM信号驱动蜂鸣器播放音乐
- 使用GPIO输入检测按键操作
-
软件设计:
- 初始化音乐频率数据表,包括低音、中音和高音
- 定义乐谱结构体,保存不同音乐的音符和节拍信息
- 编写播放音乐的函数,根据乐谱信息控制蜂鸣器输出
- 编写LED灯随音乐闪烁的函数
- 实现通过按键控制音乐播放、速度、音量的功能
-
中断处理:
- 使用外部中断处理按键输入,切换音乐、调节速度和音量
- 使用定时器中断处理节拍控制,根据乐谱信息播放音乐
-
整体架构:
- 将变量和函数划分到main.c和stm32mp1xx_it.c两个文件中,方便管理
- 通过外部变量在两个文件中交换信息
- 整体设计思路清晰,功能模块化,可扩展性强
总的来说,这个音乐盒的设计充分==利用了STM32MP157A单片机的各种外设资源,实现了一个功能丰富的音乐播放器。对于初学者来说,这个对于了解定时器和PWM有一定帮助。
帮助:关于电脑蓝屏解决方法(ST-LINK/ J-Link)