生成式AI的GPU网络技术架构

news2025/1/11 7:45:33

 b2d388f036c014fe4285939c4c235115.jpeg

生成式AI的GPU网络

  引言:超大规模企业竞相部署拥有64K+ GPU的大型集群,以支撑各种生成式AI训练需求。尽管庞大Transformer模型与数据集需数千GPU,但实现GPU间任意非阻塞连接或显冗余。如何高效利用资源,成为业界关注焦点。

张量并行

流水线阶段的GEMM操作可跨多GPU分布。张量并行采用2D模型并行(流水线+张量),显著减少流水线深度,从而缩短训练时间。

544d78a59d2998cff948c205d7250813.jpeg

9e90c2bf2fc272a06bf53b24ae278f8c.jpeg

矩阵乘法并行化极为简便。输入矩阵(X)与权重矩阵(Y)相乘时,可轻松拆分为Nt个独立部分,如图5所示,Nt可设为2,显著提升计算效率。

通过张量并行技术,将Nt个部分矩阵乘法高效分配给Nt个离散GPU,需将输入X广播至所有GPU,确保高效并行处理。

GPU间协同工作,通过乘法运算获取结果Zt。张量并行GPU间需共享部分结果,通过列并行连接或行并行加法,汇总得出最终结果Z。这一成果将无缝衔接至后续计算流程,确保高效的数据处理与运算。

df3855cb7c450f89d174c356a8d54ea7.jpeg


每个微批次的Nt GPU之间的all-to-all通信需要高带宽。通信的大小取决于微批次大小和隐藏层(矩阵乘法中使用的权重)的大小。由于高带宽要求,每个流水线中参与张量并行的 GPU 数量通常仅限于 GPU 服务器或节点内的 GPU 数量。这些服务器内 GPU 通过高速 NVlink 和 NVSwitches 连接。

回想一下,当两个 GPU 在服务器内时, H100服务器中的 GPU 到 GPU 带宽是它们在两个不同的服务器上时的 9 倍。

如图6所示,流水线阶段间的GPU交换中间结果时,相邻两个阶段的张量并行组需进行全对全(all-to-all)通信,确保数据高效传递,优化整体计算效率。

在上面的矩阵示例中,如果下一个流水线阶段的 GPU 位于不同的服务器中,Nvidia 不会将最终结果Z广播到下一个流水线阶段的所有张量并行组,而是提供像分散-聚集(scatter-gather)这样的集合,如 Megatron-LM 论文中所述。结果可以在发送端分成大小相等的块,每个 GPU 通过叶交换机将一个块发送到下一个流水线阶段中相同张量等级(轨道)的 GPU(图 5.a)。

因此,如果每个流水线阶段有八个张量并行 GPU,数据通信量可以减少八分之一。使用此方案,在接收端,每个张量并行 GPU 都可以通过 NVlinks 执行所有聚集以获取所有块并计算最终结果Z,然后再将其用于进一步的矩阵乘法。


梯度聚合流量

梯度聚合高效集成各模型副本参数梯度,实现全面优化。所有GPU协同工作,同rank/流水线内的GPU共同参与,确保每模型副本内Nm个GPU在每次迭代中并行执行Nm个梯度聚合线程,每线程含Nd个GPU,显著提升训练效率。

传统上,Ring-All-Reduce 方案以环形模式传递梯度,但速度受限。该方案下,每个GPU依次聚合从上一个GPU接收的梯度与本地计算的梯度,再发送给下一个GPU。这种顺序聚合与传播导致效率低下。为提升性能,需寻求更高效的梯度同步方法。

Nvidia创新推出双二叉树机制,实现梯度聚合的全带宽与对数延迟,大幅提升深度学习训练效率。如需深入了解此技术,请访问:[链接地址],获取详尽的论文解析。掌握前沿科技,引领深度学习新纪元。

二叉树梯度聚合中,各模型副本同阶段GPU形成树状结构。叶节点梯度上传至父节点,并与兄弟节点梯度相加。此过程递归进行,直至根节点完成梯度聚合,实现高效协同计算,优化模型训练效率。

根节点汇总所有梯度后,需逐层向下发送至树中所有节点,以更新模型参数的本地副本。梯度首先由根节点传递至其子节点,随后逐层下传,直至所有节点同步更新完毕。

在双二叉树方法中,使用跨数据并行组的同等级 GPU 构建两个二叉树。第一棵树的叶节点是另一棵树的中间节点。每棵树聚合一半的梯度。如论文所述,在双二叉树中,每个 GPU 最多可以有两个父 GPU 和两个子 GPU,并且性能(训练时间)远优于大型集群中的环形拓扑。对于大型集群,如果仅使用叶交换机即可访问子 GPU 和父 GPU,则部分梯度聚合可以使用叶交换机进行。但梯度聚合(或数据并行流量)还需要使用主干/聚合交换机来聚合所有无法通过叶交换机访问的数据并行 GPU 等级。

树形结构虽延迟低,但易在网络中产生2对1和1对2流量模式,可能引发短暂拥塞。相比之下,Ring-all-reduce的1对1流量模式更受超大规模网络运营商青睐,有效减少主干-叶子流量,保持网络高效流畅。


GPU 内存优化

GPU内存高效存储流水线/张量分区的参数、梯度、优化器状态、中间激活及输入数据,同时提供临时空间支持高效计算。

混合精度训练中,参数、梯度和优化器状态存储需求约(4*P + 12*P),采用Adam优化器时。对于拥有1万亿参数的模型,其存储空间需求高达24TB,展现了显著的存储挑战。

中间激活在反向传递中占用额外空间,与批大小和隐藏层大小成正比。通过重新计算激活,虽减少内存需求但增加计算量。对于输入激活,需1-2TB内存存储。然而,内存碎片等问题导致暂存空间增加和效率低下,需优化内存管理策略以提升性能。

GPT-4模型以1.5万亿参数傲视群雄,其32TB内存展现卓越性能,效率高达75%。若每个GPU拥有80GB容量,则400个GPU即可承载其一个模型副本,彰显强大算力。

针对Nd模型副本,优化内存的有效方法是仅在每个副本中存储部分参数、梯度和优化器状态。通过GPU间动态获取参数/状态,即“分片”技术,虽增加通信开销,但显著降低内存占用和所需GPU数量。微软研究显示,100B参数模型已通过分片优化。对于GPT-4等万亿参数模型,分片对GPU规模的影响尚待探究。


GPU-GPU 流量要点

  • 流水线分区的张量并行GPU通信需高带宽,模型分区框架应优先保持其于同一服务器节点内,确保高效通信。
  • 分散-聚集法大幅减少张量并行GPU在不同服务器间流水线阶段的通信量。通过轨道优化拓扑连接,GPU服务器实现高效流水线并行流量传输。特别地,各服务器中第N个GPU能经第N个叶交换机(轨道交换机)以无阻带宽互通,显著提升通信效率。
  • 数据并行流量实现梯度聚合,通过所有并行组中的GPU间进行。这种分层树聚合形成了多种2对1或1对2的流量模式,传输量随GPU等级中存储参数量递增,高效处理大数据量。
  • 集群GPU的数据/张量及模型并行划分后,每次训练迭代均重复通信模式。次优分区导致的拥塞、长尾延迟等问题会在迭代中累积,影响作业完成时间。
  • 分片参数于所有数据并行GPU上,可大幅减少集群GPU数量,虽增数据并行通信,但显著缩小集群规模,提升效率。

状态空间/划分方法

决定张量、管道和数据并行 GPU 的最佳组合的状态空间很大,并且取决于许多因素。

  • GPU组过多导致梯度聚合通信量剧增,影响迭代效率,流水线停顿降低GPU利用率。针对特定批次大小,过多数据并行组会缩减小批次和微批次大小,进而无法充分利用GPU计算资源,因为计算量与微批次大小直接相关。优化并行组配置,提高GPU资源利用率至关重要。
  • 增大微批量(Bu)数量可显著减少流水线刷新停滞影响,但同时微批量大小会相应减小,可能引发GPU计算利用率不足。在优化时需权衡两者,确保高效利用资源。
  • 当张量并行组GPU超过8个时,需依赖低带宽连接与叶交换机传输高带宽流量,导致性能瓶颈。为避免此问题,多数模型分区方法均致力于将GPU数量控制在每台服务器的可用范围内。
  • Nvidia的Super POD震撼发布,搭载高达256个GPU,通过NV交换机GH200的层次结构高效互联。此系统强大到支持超过八个张量并行GPU,引领计算性能新纪元。
  • 模型状态分片虽使GPU间通信量增1.5倍,但显著减少所需GPU总数,整体优化训练时间与成本,提升效率。

高效利用GPU集群是一大挑战,手动划分模型至多GPU以满足内存限制并最大化计算能力极为困难。Nvidia的开源框架(Alpa/Ray)能自动执行状态空间搜索,并考虑集群拓扑,实现智能优化。

NVIDIA Collective Communications Library(NCCL)针对特定集体操作,构建了高效跨GPU和节点的环或树结构,旨在减少争用、最大化吞吐量。其拓扑和通信模式专为集体操作优化,确保计算性能卓越。


服务器间流量

训练期间,服务器间流量利用GPU Direct RDMA技术,高效传输数据(中间结果、梯度等)于不同GPU内存间。GPU Direct RDMA是RDMA技术的进阶版,突破性地实现了GPU内存与远程设备间的直接数据交换,无需主机CPU介入,极大提升了数据传输效率。

以太网广泛普及,交换机/路由器生态系统丰富,超大规模企业和公共数据中心纷纷投资构建以太网架构。其中,RoCEv2(基于融合以太网/IP的RDMA)承载服务器间流量,其交换/路由方式与常规IP流量无异,为数据中心带来高效、稳定的网络体验。

RDMA 写入涉及以下步骤

优化后内容:在GPU/流间建立队列对(QP),通过带外通信共享QP信息,整个训练期间仅需一次设置,高效便捷。

2 - 将 QP 转换为准备状态以发送/接收交易

3 - 准备 RDMA 进行写入(发送方/接收方内存地址、传输大小)

RDMA网络接口卡(NIC)在发送服务器上接管,从特定GPU内存中读取数据,并高效地通过网络传输至目标服务器。其独特地利用GPU结构的MTU大小,将数据传输优化为网络上的多个高效事务。

QP中,每个RDMA操作(写入/读取/发送/接收)均由发送方分配唯一序列号,确保接收方精准检测丢失操作。传统RDMA NIC中,数据包不重排,序列号缺失即触发接收方暂停接收,并请求发送方从断点重传全部数据包,即回退N次重传。此法效率低下,既耗带宽又增延迟。


一些 NIC 支持选择性 NACK,它们请求仅重新传输丢失的数据包。一些 NIC(如 Nvidia 的 ConnectX NIC)允许网络对数据包进行重新排序(有限重新排序)。在此模式下,NIC 将操作无序(OOO)直接写入 GPU 内存,而不会触发向发送方的重新传输。NIC 内部的硬件可以使用位图跟踪最多 N 个操作(N 对应于带宽延迟乘积或 RTT),并按顺序将元数据传送给 GPU。此机制巧妙地使用 GPU 内存来存储 OOO 数据包,并且可以在不占用 NIC 内存空间的情况下实现。


-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1709062.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

混合A*算法详解(二)路径平滑

描述 上一篇文章混合A*算法详解(一)路径搜索 路径损失函数使用Voroni势能图 根据之前的文章分析,决定A*路径长度的有两点:路径长度和距离障碍物远近。Voroni图用于权衡这两者。之前我在记录二维点云的阿尔法形状算法时简单介绍过…

「代码厨房大揭秘:Python性能优化的烹饪秘籍!」

哈喽,我是阿佑,上篇咱们讲了 Socket 编程 —— 探索Python Socket编程,赋予你的网络应用隐形斗篷般的超能力!从基础到实战,构建安全的聊天室和HTTP服务器,成为网络世界的守护者。加入我们,一起揭…

docker-compose 映射端口失败! docker端口映射失败 ,docker映射只能使用老端口,映射无法使用

1. 现象 使用docker-compose 启动项目,发现映射端口出现问题,不能映射端口! 如图: 使用原来端口是可以使用的 2. 问题原因: 使用了docker-mode 为host模式,所以不能换端口,只能写为"8086:…

Java RMI

RMI - 安全篇 RMI分为三个主体部分: *Client-客户端*:客户端调用服务端的方法 *Server-服务端*:远程调用方法对象的提供者,也是代码真正执行的地方,执行结束会返回给客户端一个方法执行的结果。 *Registry-注册中心…

动态内存管理—C语言通讯录

目录 一,动态内存函数的介绍 1.1 malloc和free 1.2 calloc 1.3 realloc 1.4C/C程序的内存开辟 二,通讯录管理系统 动态内存函数的介绍 malloc free calloc realloc 一,动态内存函数的介绍 1.1 malloc和free void* malloc (…

Python 读取.shp文件并生成图幅编号

代码适用于需要处理和分析地理空间数据的场景,如城市规划、环境监测或自然资源管理,其中它可以帮助用户读取特定区域的Shapefile文件,确定其地理边界,并基于这些边界计算出按照经纬度5度间隔的图幅编号,进而用于地图制…

Qt Creator(2)【如何在Qt Creator中创建新工程】

阅读导航 引言一、Qt Creator开始界面介绍二、如何在Qt Creator中创建新工程1. 新建项目2. 选择项目模板3. 选择项目路径4. 选择构建系统5. 填写类信息设置界面6. 选择语言和翻译文件7. 选择Qt套件8. 选择版本控制系统9. 最终效果 三、认识Qt Creator项目内容界面1. 基本界面2.…

数据安全革命:Web3带来的隐私保护创新

随着数字化时代的发展,数据安全和隐私保护问题日益突出。传统的中心化数据存储和管理方式已经无法满足日益增长的数据安全需求,而Web3作为下一代互联网的新兴力量,正以其去中心化、加密安全的特性,引领着一场数据安全革命。本文将…

力扣232. 用栈实现队列(两栈实现队列)

Problem: 232. 用栈实现队列 文章目录 题目描述思路Code 题目描述 思路 利用两个栈,一个入栈一个出栈搭配着实现队列的相关操作: 1.创建两个栈stack1和stack2; 2.void push(int x):将要入队的元素先入栈stack1; 3.int pop()&…

LangChain之链的应用(下)

LangChain之链的应用 Chain链的应用配置LLMChain:简单链create_stuff_documents_chain:文档链create_extraction_chain:提取信息链LLMMathChain:数学链create_sql_query_chain:SQL查询链连接数据库创建并使用链 Sequen…

C语⾔:内存函数

1. memcpy使⽤和模拟实现(对内存块的复制,不在乎类型) void * memcpy ( void * destination, const void * source, size_t num ); • 函数memcpy从source的位置开始向后复制num个字节的数据到destination指向的内存位置。 • 这个函数在遇…

检索模型预训练方法:RetroMAE

论文title:https://arxiv.org/pdf/2205.12035RetroMAE: Pre-Training Retrieval-oriented Language Models Via Masked Auto-Encoder 论文链接:https://arxiv.org/pdf/2205.12035 摘要 1.一种新的MAE工作流,编码器和解器输入进行了不同的掩…

代码随想录算法训练营第四十六天||139.单词拆分

一、139.单词拆分 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s …

[智能AI摄像头]使用docker搭建RV1126开发环境

创建ubuntu docker 创建dockerfile # 设置基础镜像为Ubuntu 18.04FROM ubuntu:20.04# 设置作者信息MAINTAINER warren "2016426377qq.com"# 设置环境变量,用于非交互式安装ENV DEBIAN_FRONTENDnoninteractive# 备份源列表文件RUN cp -a /etc/apt/source…

洗地机哪个牌子清洁效果好?十大公认最好的洗地机品牌

在快节奏的现代生活中,洗地机以其吸尘、拖地和洗地三合一的功能,极大地简化了家庭清洁工作,已成为家庭清洁的得力助手。它不仅能缩短清洁时间,节省体力,还能提升清洁效果。作为资深的居家测评家,关于洗地机…

5W 3KVAC隔离 宽电压输入 AC/DC 电源模块,广泛用于工控和电力仪器、仪表、智能家居等相关行业——TP05AL系列

TP05AL系列产品是一款经济型开板式开关电源,输出功率为5W,具有可靠性高、小体积、性价比高等特点,广泛用于工控和电力仪器、仪表、智能家居等相关行业。 产品特性: 输出,输入特性 :

Python基于PyQt6制作GUI界面——多选框

QCheckBox 是 PyQt6 中的一个复选框控件&#xff0c;它允许用户通过单击来选择或取消选择某个选项。与 QRadioButton 不同&#xff0c;QCheckBox 控件并不互斥&#xff0c;这意味着用户可以同时选择多个 QCheckBox。示例对应的制作的 ui文件 界面如下所示。 <?xml version…

VSCode自动生成代码片段

1. 代码片段配置入口 输入&#xff1a;snipp 选择 Configure User Snippets 然后再选择 New Global Snippets file 输入 新建文件名称&#xff0c;然后按回车键。 2. 编辑代码模板 文件头和函数头模板&#xff1a; {"FileHeader":{"scope": "…

工作纪实50-Idea下载项目乱码

下载了公司的一份项目代码&#xff0c;发现是gbk格式的&#xff0c;但是我的日常习惯又是utf-8&#xff0c;下载项目以后全是乱码&#xff0c;一脸懵 借用网友的一张图&#xff0c;如果是一个一个文件这么搞&#xff0c;真的是费劲&#xff0c;好几百个文件&#xff01; 步骤…

React@16.x(11)ref

目录 1&#xff0c;介绍1.1&#xff0c;得到的结果 2&#xff0c;参数类型2.1&#xff0c;字符串&#xff08;不再推荐&#xff09;2.2&#xff0c;对象2.3&#xff0c;函数函数调用时机 3&#xff0c;注意点 1&#xff0c;介绍 reference 引用。和 vue 中的 refs 类似&#x…