Elastic Cloud 将 Elasticsearch 向量数据库优化配置文件添加到 Microsoft Azure

news2024/11/18 15:51:05

作者:来自 Elastic  Serena Chou, Jeff Vestal, Yuvraj Gupta

今天,我们很高兴地宣布,我们的 Elastic Cloud Vector Search 优化硬件配置文件现已可供 Elastic Cloud on Microsoft Azure 用户使用。 此硬件配置文件针对使用 Elasticsearch 作为向量数据库来存储密集或稀疏嵌入的应用程序进行了优化,以用于由 RAG(检索增强生成)支持的搜索和生成 AI 用例。

向量搜索优化的硬件配置文件:你需要了解的内容

Elastic Cloud 用户受益于跨所有主要云提供商(Azure、GCP 和 AWS)的 Elastic 托管基础设施以及对 Microsoft Azure 用户的广泛区域支持。 此版本是继之前发布的针对 GCP 的向量搜索优化硬件配置文件之后发布的。 自 2023 年 11 月起,AWS 用户就可以访问向量搜索优化配置文件。有关此 Azure 硬件配置文件的实例配置的更多具体详细信息,请参阅我们的实例类型文档:azure.es.datahot.lsv3

向量搜索、HNSW 和内存

Elasticsearch 使用分层可导航小世界图 (Hierarchical Navigable Small World ,HNSW) 数据结构来实现其近似最近邻搜索 (ANN)。 由于其分层方法,HNSW 的分层方面提供了出色的查询延迟。 为了获得最佳性能,HNSW 要求将向量缓存在节点的内存中。 此缓存是自动完成的,并使用 Elasticsearch JVM 未占用的可用 RAM。 因此,内存优化是可扩展性的重要步骤。

请参阅我们的向量搜索调整指南,以确定向量搜索嵌入的正确设置以及你是否有足够的内存用于部署。

考虑到这一点,向量搜索优化的硬件配置文件配置为小于标准 Elasticsearch JVM 堆设置。 这为在节点上缓存向量提供了更多的 RAM,从而允许用户为其向量搜索用例配置更少的节点。

如果你使用标量量化等压缩技术,则内存要求会降低 4 倍。要存储量化嵌入(在 Elasticsearch 8.12 及更高版本中提供),只需确保你存储在正确的 element_type: byte 中即可。 要使用 float 向量的自动量化,请更新嵌入以使用索引类型:int8_hnsw,如以下映射示例所示。

PUT my-byte-quantized-index
{
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "dense_vector",
        "dims": 512,
        "index_options": {
          "type": "int8_hnsw"
        }
      }
    }
  }
}

在即将推出的版本中,Elasticsearch 将提供此作为默认映射,从而无需用户调整其映射。 为了进一步阅读,我们在本博客中提供了 Elasticsearch 中标量量化的评估。

将这种优化的硬件配置文件与 Elasticsearch 的自动量化相结合是两个例子,其中 Elastic 专注于矢量搜索,而我们的矢量数据库既具有成本效益,同时仍然具有极高的性能。

入门

在 Elastic Cloud 上开始免费试用,只需选择新的向量搜索优化配置文件即可开始。

迁移现有 Elastic Cloud 部署

只需点击几下鼠标即可迁移到这个新的向量搜索优化硬件配置文件。 只需导航到你的 Elastic Cloud 管理 UI,单击即可管理特定部署,然后编辑硬件配置文件。 在此示例中,我们将从 “Storage optimized” 配置文件迁移到新的 “Vector Search” 优化配置文件。 当选择这样做时,可用存储会略有减少,但获得的是以较低的成本通过向量搜索在每个内存中存储更多向量的能力。

迁移到新的硬件配置文件使用增长和收缩方法来部署更改。 此方法添加新实例,将数据从旧实例迁移到新实例,然后通过删除旧实例来缩减部署。 即使对于单个可用性区域,此方法也可以在配置更改期间实现高可用性。

下图显示了在 Elastic Cloud 中运行的部署的典型架构,其中向量搜索将是主要用例。

此示例部署使用我们新的向量搜索优化硬件配置文件,现已在 Azure 中提供。 此设置包括:

  • 我们的热层中的两个数据节点以及我们的向量搜索配置文件
  • 1 个 Kibana 节点
  • 一个机器学习节点
  • 一台集成服务器
  • 一个 master tiebreaker

通过使用向量搜索优化的硬件配置文件部署这两个 “全尺寸” 数据节点,同时利用 Elastic 的自动密集向量标量量化,你可以索引大约 6000 万个向量,包括一个副本(具有 768 个维度)。

原文:Elastic Cloud adds Elasticsearch Vector Database optimized profile to Microsoft Azure — Elastic Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1699843.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

<el-table>根据后端返回数据决定合并单元格的数量(521特别版)

文章目录 一、需求说明二、用到的方法三、代码(只展示了本文章重点代码) 一、需求说明 💝仅合并第一列,其余为固定列 二、用到的方法 💌合并单元格可以采用三种方法 💕1. 手写表格 简单 但没有饿了么写…

力扣HOT100 - 136. 只出现一次的数字

解题思路: class Solution {public int singleNumber(int[] nums) {int single 0;for (int num : nums) {single ^ num;}return single;} }

生命在于学习——Python人工智能原理(1.1)

说明:今年学一部分人工智能方向的知识,网安也会穿插,看后续如何将二者结合起来。 一、人工智能的基本知识 1、人工智能的起源 1956年美国达特茅斯学院召开了一个夏季论班,首次提出人工智能的概念。 1950年图灵提出了图灵测试&a…

Jenkins + github 自动化部署配置

1 Jenkins安装 AWS EC2安装Jenkins:AWS EC2 JDK11 Jenkins-CSDN博客 AWS EC2上Docker安装Jenkins:https://blog.csdn.net/hhujjj2005/article/details/139078402 2 登录jenkins http://192.168.1.128:8080/ $ docker exec -it d1851d9e3386 /bin/ba…

ChatGPT-4o 实战 如何快速分析混淆加密和webpack打包的源码

ChatGPT-4o 几个特点 一个对话拥有长时间的记忆,可以连续上传文件,让其分析,最大一个代码文件只能3M,超出3M的文件,可以通过split-file可以进行拆分 其次ChatGPT-4o可以生成文件的下载链接,这有利于大文件的…

Nginx 的原理解析 worker 配置及相关问题 -细节狂魔

文章目录 前言Nginx 的最基本的执行过程(master & worker)worker 是如何进行工作的 一个 master 和 多个 woker 有哪些好处1、可以使用 nginx 热部署2、节省资源 && worker 进程之间互不影响 && nginx 服务不会中断 woker 设置多少才…

如何查看哪些组策略应用于你的电脑和用户帐户?这里有详细步骤

如果你希望在电脑上查看所有有效的组策略设置,以下是操作方法。 什么是Windows中的组策略 在Windows世界中,组策略为网络管理员提供了一种将特定设置分配给用户组或计算机组的方法。然后,无论何时组中的用户登录到联网的PC,或无论何时启动组中的PC,都会应用这些设置。 …

Linux系统之GoAccess实时Web日志分析工具的基本使用

Linux系统之GoAccess实时Web日志分析工具的基本使用 一、GoAccess介绍1.1 GoAccess简介1.2 GoAccess功能1.3 Web日志格式 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本3.3 检查系统镜像源3.4 更新软件列表…

【课程作业】嵌入式系统与设计上机作业(作业三)

个人名片: 🎓作者简介:嵌入式领域优质创作者🌐个人主页:妄北y 📞个人QQ:2061314755 💌个人邮箱:[mailto:2061314755qq.com] 📱个人微信:Vir2025WB…

基于机器学习判断面部微表情发现哪些人更容易诊有帕金森病

1. 概述 帕金森病(Parkinson’s disease,PD)是一种慢性、进展性的神经退行性疾病,主要影响运动系统。该病症以大脑中黑质致密部多巴胺能神经元的逐渐丧失为特征,导致多巴胺(一种重要的神经递质&#xff09…

XX数字中台技术栈及能力

XX数字中台技术栈及能力 1 概述 XX数字中台面向数据开发者、数据管理者和数据应用者,提供数据汇聚、融合、治理、开发、挖掘、共享、可视化、智能化等能力,实现数据端到端的全生命周期管理,以共筑数字基础底座,共享数据服务能力…

插入排序(概述)

描述 插入排序为将一个数插入到以排序好的数组中 目录 描述 原理 特性 代码 原理 我们以升序为例 先将新数插入到数组的最后一位,记录下新数的值 从新数的位置开始往前遍历,如果前一位大于新数的值 则将当前位置修改为前一位的值 如果前一位小…

前端:音频可视化(H5+js版本)

一、效果展示 HTML5JS实现一个简单的音频可视化 二、代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><title>音频可视化</title><style></style></head><body><divs…

python mp3转mp4工具

成品UI 安装moviepy库 pip install moviepy 转换demo from moviepy.editor import *# 创建一个颜色剪辑&#xff0c;时长与音频相同 audioclip AudioFileClip(r"C:\Users\Administrator\PycharmProjects\pythonProject44\test4\赵照 - 灯塔守望人.mp3") videoclip…

P6160 [Cnoi2020] 向量

[Cnoi2020] 向量 题目背景 向量(vector)&#xff0c;指具有大小(Magnitude)和方向(Direction) 的量。 与向量对应的量叫做数量(Scalar)&#xff0c;数量只有大小&#xff0c;没有方向。 对于 Cirno 来说&#xff0c;整天环绕氷屋的旋转 Sangetsusei 们是向量而不是数量。 Sun…

Spring Cloud 项目中使用 Swagger

Spring Cloud 项目中使用 Swagger 关于方案的选择 在 Spring Cloud 项目中使用 Swagger 有以下 4 种方式&#xff1a; 方式一 &#xff1a;在网关处引入 Swagger &#xff0c;去聚合各个微服务的 Swagger。未来是访问网关的 Swagger 原生界面。 方式二 &#xff1a;在网关处引…

关于C的\r回车在不同平台的问题

首先我们需要搞明白\r和\n是两回事 \r是回车&#xff0c;前者使光标到行首&#xff0c;&#xff08;carriage return&#xff09; \n是换行&#xff0c;后者使光标下移一格&#xff0c;&#xff08;line feed&#xff09; Linux平台下 #include <stdio.h> int main()…

C++的AVL树

目录 基本概念 插入的语言分析 LL右旋 RR左旋 额外结论及问题1 LR左右旋 RL右左旋 额外结论及问题2 插入结点 更新bf与判断旋转方式 旋转代码实现 准备工作一 LL右旋的实现 RR左旋的实现 准备工作二 LR左右旋的实现 RL右左旋的实现 完整代码 基本概念 1、…

机器学习算法手撕(一):KD树

import math import matplotlib.pyplot as pltclass Node:def __init__(self, data, leftNone, rightNone):self.data dataself.left leftself.right right# 创建KDTree类 class KDTree:def __init__(self, k):self.k kdef create_tree(self,dataset,depth):if not dataset…

Docker CIG使用

Docker CIG是什么 CIG为&#xff1a;CAdvisor监控收集、InfluxDB存储数据、Granfana图表展示 这个组合是一个常见的监控 Docker 容器的解决方案,它包括以下三个组件: cAdvisor (Container Advisor): cAdvisor 是一个开源的容器资源监控和性能分析工具。它能够收集有关正在运行的…