Golang并发编程-协程goroutine任务取消(Context)

news2025/3/16 13:34:13

文章目录

  • 前言
  • 一、单个任务的取消
  • 二、 所有任务取消
  • 三、Context的出现
    • Context的定义
    • Context使用
  • 总结


前言

在实际的业务种,我们可能会有这么一种场景:需要我们主动的通知某一个goroutine结束。比如我们开启一个后台goroutine一直做事情,比如监控,现在不需要了,就需要通知这个监控goroutine结束,不然它会一直跑,就泄漏了。

我们都知道一个goroutine启动后,我们是无法控制他的,大部分情况是等待它自己结束,那么如果这个goroutine是一个不会自己结束的后台goroutine呢?比如监控等,会一直运行的。

下面我们分别介绍 chan+select 方式 和 Context方式任务的取消的方法。


一、单个任务的取消

下面的代码,代表的场景是,一个监控的任务一直在执行中,通过一个无缓存信道,在接受到bool的值的时候,协程内部通过多路复用进入监控停止的逻辑,退出任务。

package main

import (
	"fmt"
	"time"
)

func cancel_1(stop chan bool) {
	stop <- true
}

func monitor(name string, stop chan bool) {
	for {
		select {
		case <-stop:
			fmt.Printf("%v 监控退出,停止了...\n", name)
			return
		default:
			fmt.Printf("%v, goroutine监控中... \n", name)
			time.Sleep(2 * time.Second)
		}
	}
}

func main() {
	stop := make(chan bool)

	go monitor("1号", stop)

	time.Sleep(10 * time.Second)
	fmt.Println("可以了,通知监控停止")
	cancel_1(stop)
	//为了检测监控过是否停止,如果没有监控输出,就表示停止了
	time.Sleep(5 * time.Second)
}

代码执行结果如下:

[root@work day01]# go run context.go 
1号, goroutine监控中... 
1号, goroutine监控中... 
1号, goroutine监控中... 
1号, goroutine监控中... 
1号, goroutine监控中... 
可以了,通知监控停止
1号 监控退出,停止了...

现在,稍微改造下上面的代码,我们再增加几个goroutine。2号,3号 。。。

func main() {
	stop := make(chan bool)

	go monitor("1号", stop)
	go monitor("2号", stop)
	go monitor("3号", stop)
	.....
	....
}

再次执行查看结果:

[root@work day01]# go run context.go 
3号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
3号, goroutine监控中... 
1号, goroutine监控中... 
3号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
可以了,通知监控停止
1号 监控退出,停止了...
3号, goroutine监控中... 
2号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
3号, goroutine监控中... 
2号, goroutine监控中... 

发现这种方式,只停了其中的一个任务。其他两个任务还在执行。
如何保证所有的任务都停止呢,我们看下一节

二、 所有任务取消

我们改造代码如下:
新增一个cancel_2的方法,再main函数调用cancel_2。

package main

import (
	"fmt"
	"time"
)

func cancel_1(stop chan bool) {
	stop <- true
}

func cancel_2(stop chan bool) {
	close(stop)
}

func monitor(name string, stop chan bool) {
	for {
		select {
		case <-stop:
			fmt.Printf("%v 监控退出,停止了...\n", name)
			return
		default:
			fmt.Printf("%v, goroutine监控中... \n", name)
			time.Sleep(2 * time.Second)
		}
	}
}

func main() {
	stop := make(chan bool)

	go monitor("1号", stop)
	go monitor("2号", stop)
	go monitor("3号", stop)

	time.Sleep(10 * time.Second)
	fmt.Println("可以了,通知监控停止")
	cancel_2(stop)
	//为了检测监控过是否停止,如果没有监控输出,就表示停止了
	time.Sleep(5 * time.Second)

}

执行结果如下:

[root@work day01]# go run context.go 
3号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
3号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
3号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
可以了,通知监控停止
3号 监控退出,停止了...
2号 监控退出,停止了...
1号 监控退出,停止了...

可以看到,三个goroutine都停止了,这里我们用到了关闭通道的广播机制,所有通道接收者都会收到关闭的消息。

上面的例子,说明当我们定义一个无缓冲通道时,如果要对所有的 goroutine 进行关闭,可以使用 close 关闭通道,然后在所有的 goroutine 里不断检查通道是否关闭(前提你得约定好,该通道你只会进行 close 而不会发送其他数据,否则发送一次数据就会关闭一个goroutine,这样会不符合咱们的预期,所以最好你对这个通道再做一层封装做个限制)来决定是否结束 goroutine。

三、Context的出现

前两节,chan+select的方式,是比较优雅的结束一个goroutine的方式,不过这种方式也有局限性,如果有很多goroutine都需要控制结束怎么办呢?如果这些goroutine又衍生了其他更多的goroutine怎么办呢?如果一层层的无穷尽的goroutine呢?如下图,当取消Handl(Req1)这个节点的任务,希望取消与他关联的子任务的时候。我们再通过上面方式是不是就需要修改很多呢。所以Context的真正用途出现了。

在这里插入图片描述

Context的定义

Context,也叫上下文,它的接口定义如下:

type Context interface {
    Deadline() (deadline time.Time, ok bool)
    Done() <-chan struct{}
    Err() error
    Value(key interface{}) interface{}
}
  • Deadline:返回的第一个值是 截止时间,到了这个时间点,Context 会自动触发 Cancel 动作。返回的第二个值是
    一个布尔值,true 表示设置了截止时间,false 表示没有设置截止时间,如果没有设置截止时间,就要手动调用 cancel 函数取消Context。
  • Done:返回一个只读的通道(只有在被cancel后才会返回),类型为 struct{}。当这个通道可读时,意味着parent
    context已经发起了取消请求,根据这个信号,开发者就可以做一些清理动作,退出goroutine。
  • Err:返回 context 被 cancel 的原因。
  • Value:返回被绑定到 Context 的值,是一个键值对,所以要通过一个Key才可以获取对应的值,这个值一般是线程安全的。

Context使用

使用Context完成

package main

import (
	"context"
	"fmt"
	"time"
)

func monitor(name string, ctx context.Context) {
	for {
		select {
		case <-ctx.Done():
			fmt.Printf("%v 监控退出,停止了...\n", name)
			return
		default:
			fmt.Printf("%v, goroutine监控中... \n", name)
			time.Sleep(2 * time.Second)
		}
	}
}

func main() {

	ctx, cancel := context.WithCancel(context.Background())

	go monitor("1号", ctx)
	go monitor("2号", ctx)
	go monitor("3号", ctx)

	time.Sleep(10 * time.Second)
	fmt.Println("可以了,通知监控停止")
	cancel()
	//为了检测监控过是否停止,如果没有监控输出,就表示停止了
	time.Sleep(5 * time.Second)
}

执行结果:

[root@work day01]# go run context2.go 
1号, goroutine监控中... 
3号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
3号, goroutine监控中... 
2号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
1号, goroutine监控中... 
1号, goroutine监控中... 
2号, goroutine监控中... 
3号, goroutine监控中... 
2号, goroutine监控中... 
1号, goroutine监控中... 
3号, goroutine监控中... 
可以了,通知监控停止
3号 监控退出,停止了...
1号 监控退出,停止了...
2号 监控退出,停止了...

总结

  • 任务的取消,一般可以采用chan + select方式,但是任务依赖比较复杂的情况推荐使用Context
  • 通常 Context 都是做为函数的第一个参数进行传递(规范性做法),并且变量名建议统一叫 ctx
  • Context 是线程安全的,可以放心地在多个 goroutine 中使用。
  • 当你把 Context 传递给多个 goroutine 使用时,只要执行一次 cancel 操作,所有的 goroutine 就可以收到
    取消的信号
  • 当一个 Context 被 cancel 时,继承自该 Context 的所有 子 Context 都会被 cancel。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1694970.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

浅谈C++函数

目录 一、函数的概念二、调用函数的两个前提三、函数传参的三种形式四、函数返回类型 一、函数的概念 函数是C程序的基本模块&#xff0c;通常一个C程序由一个或多个函数组成。函数可以完成用户指定的任务&#xff0c;一般分为库函数和用户自定义的函数。函数由函数头和函数体…

AIGC-常见图像质量评估MSE、PSNR、SSIM、LPIPS、FID、CSFD,余弦相似度----理论+代码

持续更新和补充中…多多交流&#xff01; 参考: 图像评价指标PNSR和SSIM 函数 structural_similarity 图片相似度计算方法总结 MSE和PSNR MSE: M S E 1 m n ∑ i 0 m − 1 ∑ j 0 n − 1 [ I ( i , j ) − K ( i , j ) ] 2 MSE\frac{1}{mn}\sum_{i0}^{m-1}\sum_{j0}^{n-1}[…

重学java 43.多线程 多等待多唤醒案例

Fear never builds the future,but hope does. —— 24.5.25 多等待多唤醒问题 在多条线程同时消费同时等待时&#xff0c;会出现问题 BaoZiPu package S77ThreadMoreWait;/*count和flag可以定义成包装类&#xff0c;但要记得给count和flag手动赋值不然对于本案例来说&#xff…

C# MemoryStream流的详解与示例

文章目录 1. MemoryStream的基本介绍2. 创建MemoryStream对象无参构造函数带参构造函数 3. 向MemoryStream中写入数据写入字节数组写入字符串 4. 从MemoryStream中读取数据读取字节数组读取字符串 5. MemoryStream的实用辅助方法获取长度设置长度定位 6. 示例代码 在C#中&#…

JWT使用方法

目录 基础概念 依赖 生成令牌 工具类 控制层 解析令牌 工具类 网关过滤器 效果 基础概念 Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准&#xff08;(RFC 7519).该token被设计为紧凑且安全的&#xff0c;特别适用于分布式站点…

局域网桌面监控软件哪个好用?良心推荐

如何有效地监控和管理内部员工的计算机使用行为&#xff0c;防范潜在的安全风险&#xff0c;提高工作效率&#xff0c;是众多企业管理者关注的焦点。 而一款优秀的局域网桌面监控软件无疑能为企业的IT治理提供有力支撑。 小编在此给大家推荐一款好用的局域网桌面监控软件——域…

stm32H743不要将主频设置到480MHz

0 问题描述 本文使用的stm32H743是V版本&#xff0c;支持最高480MHz的主频。但在将主频设置为480MHz之后&#xff0c;使用FDCAN的回环模式出现了各种接收不到的异常问题。经过一番排查&#xff0c;将主频修改到400MHz&#xff0c;同时降低芯片内部LDO输出电压后恢复了正常。 …

深入理解NumPy与Pandas【numpy模块及Pandas模型使用】

二、numpy模块及Pandas模型使用 numpy模块 1.ndarray的创建 import numpy as np anp.array([1,2,3,4]) bnp.array([[1,2,3,4],[5,6,7,8]]) print(a) #[1 2 3 4] print(b) #[[1 2 3 4][5 6 7 8]] 1.1使用array()函数创建 numpy.array(object, dtype None, copy True, ord…

域内攻击 ----->约束非约束委派攻击

在域中&#xff0c;除了我们常见的横向移动以外&#xff0c;还有很多攻击&#xff0c;像什么kerberoasting&#xff0c;委派攻击&#xff0c;NTLMrelay啊...... 还有很多&#xff08;暂时只知道这些&#xff09; 以前在一篇公众号看到的一个笑话也荟萃了网安的一些攻击手法&am…

设计模式在芯片验证中的应用——单例

一、单例模式 单例模式(Singleton)是一种创建型设计模式&#xff0c;能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。验证环境配置(configuration)类、超时(timeout)处理类等可以使用单例实现。比如说验证环境需要在特定场景中监测特定接口上的超时事…

【机器学习300问】97、机器学习中哪些是凸优化问题,哪些是非凸优化问题?

在机器学习的领域中&#xff0c;多数模型的参数估计问题实质上可以转化为优化问题。鉴于机器学习模型的多样性&#xff0c;不同的模型会对应着不同的损失函数&#xff0c;进而形成各具特色的优化问题。了解优化问题的形式和特点&#xff0c;对于提升我们求解模型参数的效率和准…

在 Visual Studio 2022 (VS2022) 中删除 Git 分支的步骤如下

git branch -r PS \MauiApp1> git push origin --delete “20240523备份” git push origin --delete “20240523备份”

推荐五个线上兼职,在家也能轻松日入百元,适合上班族和全职宝妈

在这个瞬息万变的时代&#xff0c;你是否也曾考虑过在繁忙的工作之外&#xff0c;寻找一份兼职副业来补贴家用&#xff0c;同时保持生活的多样性&#xff1f;别急&#xff0c;现在就让我为你揭秘五个可靠的日结线上兼职岗位&#xff0c;助你轻松迈向财务自由之路&#xff01; 一…

地质考察AR远程交互展示系统辅助老师日常授课

广东这片充满活力的土地&#xff0c;孕育了一家引领ARVR科技潮流的杰出企业——深圳华锐视点&#xff0c;作为一家专注于VR/AR技术研究与业务开发的先锋公司。多年来&#xff0c;我们不断突破技术壁垒&#xff0c;将AR增强现实技术与各行各业的实际需求完美结合&#xff0c;助力…

基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 块定义与相似度计算 ​4.2 贝叶斯框架下的加权融合 4.3 加权最小均方误差估计 5.完整程序 1.程序功能描述 基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真&#xff0c…

JAVA线程池的线程数量配置

一 JAVA线程池的线程数量配置 关于线程的配置&#xff0c;线程数量配置多少这个问题呢&#xff1f;往往不同的环境与不同的线程中的代码决定其配置的线程的数量。 二 常见的线程量配置 最常见的方式根据线程中处理的代码划分为CPU密集型或IO密集型&#xff1a; CPU密集型&…

react实现table可拖拽表头(给react-jss样式传递参数、滚动条样式)

目录 react实现table可拖拽表头安装依赖resizableTitle / index.tsxdrapTable.tsx使用DragTable 组件滚动条样式效果 react实现table可拖拽表头 安装依赖 yarn add react-resizable yarn add react-jssresizableTitle / index.tsx import { createUseStyles } from react-js…

【电子学会】2023年09月图形化一级 -- 保护环境

保护环境 1. 准备工作 &#xff08;1&#xff09;删除角色小猫&#xff0c;添加角色Wizard&#xff0c;Bear-walking&#xff1b; &#xff08;2&#xff09;添加背景Desert和Forest。 2. 功能实现 &#xff08;1&#xff09;调整魔法师和熊的大小为50&#xff1b; &…

Linux文本处理三剑客(详解)

一、文本三剑客是什么&#xff1f; 1. 对于接触过Linux操作系统的人来说&#xff0c;应该都听过说Linux中的文本三剑客吧&#xff0c;即awk、grep、sed&#xff0c;也是必须要掌握的Linux命令之一&#xff0c;三者都是用来处理文本的&#xff0c;但侧重点各不相同&#xff0c;a…

MySQL---通用语法及分类

目录 一、SQL通用语法 二、 SQL分类 1.DDL 1.1 DDL数据库操作 1.2 DDL表操作---查询 1.3 DDL表操作---创建​编辑 1.4 DDL表操作---数据类型 1.5 DDL表操作---修改 1.6 DDL表操作---删除 1.7 DDL总结 2. 图形化界面工具DataGrip 2.1 创建 2.2 使用 3. DML 3.1 DML介绍 3.2 DM…