嵌入式之音频基础知识

news2025/3/18 2:49:59

声音特性

1、响度:人主观上感觉声音的大小(俗称音量),由“振幅”和人离声源的距离决定,振幅越大响度越大,人和声源的距离越小,响度越大;

2、音调:声音的高低,由“频率”决定,频率越高音调越高。(频率单位Hz,赫兹,人耳听觉范围20~20000Hz。20Hz以下称为次声波,20000Hz以上称为超声波)

3、频率是每秒经过一给定点的声波数量,它的测量单位为赫兹,是以海因里希·鲁道夫·赫兹的名字命名的。此人设置了一张桌子,演示频率是如何与每秒的周期相关的。

4、1千赫或1000赫表示每秒经过一给定点的声波有1000个周期,1兆赫就是每秒钟有1,000,000个周期,等等。

5、音色:又称音品,波形决定了声音的音色。声音因物体材料的特性而不同,音色本身是一种抽象的东西,但波形是把这个抽象直观的表现。波形不同,音色则不同。不同的音色,通过波形,完全可以分辨的。

6、乐音:有规则的让人愉悦的声音。噪音:从物理学的角度看,由发声体作无规则振动时发出的声音;从环境保护角度看,凡是干扰人们正常工作、学习和休息的声音,以及对人们要听的声音起干扰作用的声音。

7、音调,响度,音色是乐音的三个主要特征,人们就是根据他们来区分声音。

8、当两个物体碰撞后振动产生声音时,若两者振动频率比为不可化简的复杂比,如:201:388,那么我们分辨出来会觉得这个声音刺耳;相反,若两者振动频率比为可化简的简单比。

耳机

3.5mm插头是指直径为3.5mm的同轴音频插头;从端部到根部依次是左声道、右声道、地线,其中左声道常用红色线皮,右声道常用白色的;下图使用的是国际标准;

线控类型大致有这几种,音量滑块带麦线控、单键带麦和多键带麦。原理电路图上不难看出,不同的按键下串入了不同的电阻,当按键被按下后不同的电阻被接入到了回路当中,麦克风正极接收到的信号也随之发生改变;手机判断用户对线控做了哪些操作都是通过麦克风正极输入的信号变化来判断的。

喇叭(扬声器)

 喇叭(扬声器)的工作原理

    喇叭(扬声器)的工作原理主要基于电声换能器件的原理。当交流音频电流通过扬声器的线圈(音圈)时,音圈中产生相应的磁场。这个磁场与扬声器上自带的永磁体产生的磁场相互作用,产生力使音圈在永磁体的磁场中振动。由于扬声器的振膜和音圈是连在一起的,振膜也会随之振动,从而产生与原音频信号波形相同的声音。

    具体来说,喇叭的底部有一颗磁铁,其磁场方向固定不可改变。通电的线圈在通电时也能产生磁场,形成“第二颗磁铁”。由于使用的是交流电,这第二颗磁铁的磁场方向会随时间改变。当音圈通电时,其产生的磁场与永磁铁的磁场相互作用,导致音圈振动。交流信号驱动音圈产生电磁场后,便会在磁体作用下按信号频率运动,使音圈沿着轴向振动,带动纸盆使周围大面积的空气发生相应的振动,从而将机械能转换为声能,发出悦耳的声音

日常见到的扬声器中,95% 都是动圈扬声器,它一般由驱动,悬挂,支撑等部分构成。

扬声器主要技术指标

1.功率:最大额定功率是指扬声器不会引起损坏所能承受的最大功率,最小推荐功率指为产生合适的声压所需要的输入电功率。一般建议提供给喇叭2-3倍的最大额定功率,让喇叭有足够的动态,减少失真。

2.频率响应:频响曲线反映的是电声设备在不同频率上能够发出多大的声音。理想中的扬声器当然是能在人耳听力范围,也就是 20 Hz - 20 kHz 上的每个频率都发出大小一致的声音

3.标称阻抗:扬声器的标称阻抗用以与功率放大器输出阻抗相配接的阻抗值,可以为16欧姆、8欧姆、6欧姆、4欧姆。根据音箱的结构,功率放大器的结构,可以灵活的搭配。

4.灵明度:灵明度是喇叭一个非常重要的指标。一般定义为:在扬声器系统输入端加上额定功率1W的电信号,在参考1M处产生的声压,单位用dB表示。在相同条件下,灵敏度高的扬声器听起来声音较大。灵敏度过高,会导致扬声器的动态范围下降;灵敏度过低,则推动需较多功率,要求功率放大器的功率足够。专业扬声器的灵敏度一般为98-110dB;高保真扬声器的在70-98dB 。

5.带宽(Bandwidth):指扬声器能够有效工作的频率范围。它表示扬声器在低频到高频的范围内可以产生正常、清晰的声音输出。

6.最大声压级(Maximum Sound Pressure Level,Max SPL):它表示扬声器在最大输出功率下可以达到的最大声音强度。它是衡量扬声器音量输出能力的参数。

7.失真(Distortion):描述扬声器在工作过程中产生的非线性畸变或失真情况。失真会导致声音质量下降,包括谐波失真、交调失真等。

8.指向性(Directivity):表示扬声器辐射声能的方向性和范围。不同类型的扬声器具有不同的指向性特性,如全向性、单向性、扇形指向性等。

扬声器的检测
(1)好坏的判断
将万用表置于“Rx1”挡,用红表笔接音圈(线圈)的一个接线端子,用黑表笔点击另一个接线端子,若扬声器能够发出“咔咔”的声音,说明扬声器正常;否则说明扬声器的音圈或引线开路。

(2)阻抗的估测
扬声器铁芯的背面通常有一个直接打印或贴上去的铭牌,该铭牌上一般都标有阻抗的大小,若铭牌脱落导致无法识别它的阻抗时,则需要使用万用表进行判别。将万用表置于“Rx1”挡,调零后,测量线圈的电阻,阻值为6.1Ω,将该值乘以1.3 得到的数值为7.93Q,说明被测扬声器的阻抗为8Q。

(3)极性的判断
扬声器必须要按正确的极性连接,否则会因相位失真而影响音质。大部分扬声器在背面的接线支架上通过标注“+的符号标出两根引线的正负极性,而有的扬声器并未标注,为此需要对此类扬声器的极性进行判别。采用的判别方法主要有电池检测法和万用表检测法两种

MIC

MIC接口的工作原理

MIC接口将声音转化为电信号。当声音通过麦克风时,麦克风会将其转化为微弱的电信号。这个过程称为声电转换。然后,这些电信号可以通过线路传输到录音设备或扩音器中,以便进行处理和播放。

驻极体麦克风原理

如图为歌尔声学的B4013AM443,ECM驻极体电容传声器为将声音转换为电信号的单元,转换后的电信号幅度非常小,经过FET放大之后从正极输出可使用的声音信号。

驻极体麦克风单端式电路设计

 如图,麦克风的偏置电压2.0V经过一个串联电阻2.2K接到麦克风的正极,负极直接接GND。2.2K电阻是什么作用:这个电阳给mic里面的FET提供一个直流偏置电压,让FET工作在饱和区,完成放大的功能。

由mic的手册可以知道,MIC消耗的最大电流为500uA,偏置电压为2V,为了能是FET的输出有最大的动态范围,那么Tem1处的电压最好是偏置电压的一半,即1V,根据电流为500uA,那么RL=2V/500uA=2K。所以这个电阻最好是2K左右,选取2.2K也差不多吧。

 驻极体麦克风差分式电路设计

如下图,差分的方式,因为MIC+,MIC-的信号是幅度相同,相位相反的信号,所以,R1和R2必须相等,同上面所说的,考虑到静态工作点的问题,电流还是500uA,因此R1+R2-2K,所以R1=R2=1K。
有些电路中会看到R1和R2都是2K左右吧,并没有降低,原因是因为一般MIC的输出信号也只有200-300mV,动态范围要求不是很高,所以用2K影响也不大。
值得一提的是,偏置电阻大一些,增益会大些即MIC输出的音频的幅度也会大一些。这是由FET放大电路决定。

MIC电路的噪声问题
可能碰到最多的问题就是MIC电路有噪声,比如收到wifi干扰等问题,会有滋滋的声音。噪声问题可以考虑以下几个方式处理:

(1)使用差分电路的连接方式,去除共模干扰
(2)在MIC上面并联焊接10pF-100PF的滤波电容
(3)如果是接线端子引入的,接线端子可用弄成双绞线的形式
(4)串联如磁珠滤波
(5)MIC安装需要到位,并且不能形成谐振腔体 

麦克风的灵敏度高好还是低

       要根据你使用的条件来选择。如果声源离麦克风较远,需用灵敏度高的麦克风;如果声源离麦克风很近,则用灵敏度低的麦克风。前者能保证拾取声音信号的灵敏度,后者能有效地降低环境噪音。按照你使用的条件,离麦克风近一点是没有问题的,所以还是选用灵敏度低一点的好

1 麦克风的分类
1.1、动圈式麦克风(Dynamic Micphone)
原理:基本构造包含线圈、振膜、永久磁铁三部分。当声波进入麦克风,振膜受到声波的压力而产生振动,与振膜在一起的线圈则开始在磁场中移动,根据法拉第的楞次定律,线圈会产生感应电流。
特性:动圈式麦克风因含有磁铁和线圈,不够轻便、灵敏度较低、高低频响应表现较差;优点是声音较柔润,适合用来收录人声。
应用:KTV场所。
1.2、电容式麦克风(Condenser Micphone)
原理:根据电容两片隔板间距离的改变来产生电压变化。当声波进入麦克风,振膜产生振动,使得振动膜和基板之间的距离会随着振动而改变,于是基板间的电容会变,根据Q=C*V(电容式麦克风中电容极板的电压会维持一个定值)得到变化的电荷量Q。
特性:灵敏度高,常用于高质量的录音。
应用:消费电子、录音室。
1.3、铝带式麦克风(Ribbon Micphone)
原理:在磁铁两极间放入通常是铝制的波浪状金属箔带,金属薄膜受声音震动时,因电磁感应而产生信号。
1.4、碳精麦克风(Carbon Micphone)

2 两种常用电容式麦克风的对比
2.1、驻极体电容麦克风(Electret Condenser Micphone)
原理:驻极体麦克风使用了可保有永久电荷的驻极体物质,不需要再对电容供电。(若驻极体麦克风中内置放大电路,则需要供电)
优点:技术成熟、价格便宜
缺点:体积大,不方便SMT、引线长,造成信号衰减、生产工序多,一致性差、灵敏度不稳定
2.2、微机电麦克风(MEMS Micphone)
原理:微机电麦克风也称麦克风芯片或硅麦克风,硅麦一般都集成了前置放大器,甚至有些硅麦会集成模拟数字转换器,直接输出数字信号,成为数字麦克风。
优点:体积小,可SMT、产品稳定性好
缺点:价格较高
备注:一般情况下,我们把集成了前置放大器或者模拟数字转换器的麦克风称为拾音器(pickup)。

3 麦克风的性能参数
3.1、指向性(Directivity)
指向性描述麦克风对于不同角度声音的灵敏度,规格上常用如下的polar pattern表示,在每个示意图中,虚线圆形的上方代表麦克风前方,下方代表麦克风的后方。

3.2、灵敏度级(Sensitivity)
声压:指声波通过某种媒质时,由振动产生的压强改变量。单位为Pa、μbar。1μbar=0.1Pa。
参考声压:P(ref) = 20μPa。


声压级(SPL):

例:1Pa声压的声压级为


灵敏度:指麦克风的开路电压与作用在其膜片上的声压之比。单位为mv/pa、mv/ubar。1mv/ubar = 10mv/pa。

麦克风灵敏度的定义是馈给1pa(94dB)的声压时,麦克风输出端的电压(dBV)。
所以-30dBV/Pa的麦克风的灵敏度比-42dBV/Pa的麦克要高很多。

MIC灵敏度是指在单位声压强度下所产生的信号电强度,用DBV表示。
单位声压绝对值为1PA,相对值为94DB(也有用加权的,94DBA),其中基准压强为2X10-5PA。
现在大多产家是按这个来定义的,所以-40DB的比-30DB的灵敏度高。
MIC灵敏度是固定指标,是指在标准偏置下测出的。产商可改变工艺或者材料来提高。用户在使用中不可降低,如果用户偏置不正确,会产生失真和带宽挤压,表现为灵敏度降低。
啸叫问题,应该不是MIC灵敏度问题。因为在HF MODE是半双工模式,侧间会被消除。如果在TEST MODE仍是全双工所以会正反馈。
消除啸叫常有,降低声音强度(SPEAKER输出),结构调整(MIC和SPEAKER),加MUTE,密封,降噪等方法消除。


参考灵敏度:Mr = 1V/Pa


灵敏度级:
例:1V/Pa灵敏度的灵敏度级为


3.3、信噪比(SNR)
信号与噪声的比例。

3.4、总谐波失真(THD)
总谐波失真是指输出信号比输入信号多出的谐波成分。谐波失真是系统不是完全线性造成的。所有附加谐波电平之和称为总谐波失真。总谐波失真与频率有关,一般来说,1khz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。


公式1:
上式中,符号G表示谐波分量的有效值,它将按要求在表示电流时被I代替,在表示电压时被U代替,H的值在与限制有关的每一个标准中给出。按照上述定义,THD不包含简谐波,并且,有一固定的谐波上限。


公式2:
上式中,Q为总有效值,Q1为基波有效值,可代表电压或电流,按照上述定义,THD包含间谐波和直流分量。
3.5、等效输入噪声(EIN)
无外声场时,仅由传声器固有噪声引起的输出电压,可以看作能产生相同有效值输出电压的外部声压级。
3.6、电源抑制比(PSRR)
电源抑制比(PSRR)是输入电源变化量(以伏为单位)与转换器输出变化量(以伏为单位)的比值,常用分贝表示。
3.7、输出阻抗(Zout)

LINE_IN

功放

音频编码

音频解码

音频文件

音频信号DAC

音频信号ADC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1694704.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Jenkins安装 :Aws EC2下Docker镜像安装

1 安装docker # 安装docker $ sudo yum install -y docker# 启动docker daemon $ sudo systemctl start docker# 用户加入docker组 $ sudo usermod -aG docker username 2 docker安装jenkins $ docker pull jenkins/jenkins:lts# 安装成功 $ docker images REPOSITORY …

vue 表单些某项 v-if 控制后,想在显示时添加验证

效果: 可以为<el-form-item>添加 key 然后prop正常写就行 (key需要唯一值) <el-form-item label"设置" v-if"advanced_setting" key"threshold" prop"threshold"><el-inputv-model"form_Warning.threshold"p…

Python数字比大小获取大的数

目录 一、引言 二、数字比较的基本语法 三、获取较大的数 使用条件语句 使用内置函数 四、处理特殊情况 比较非数字类型 处理无穷大和NaN 五、应用实例 在游戏开发中比较分数 在数据分析中找出最大值 六、优化与性能 七、总结 一、引言 在Python编程的广阔天地中…

通过RAG架构LLM应用程序

在之前的博客文章中&#xff0c;我们已经描述了嵌入是如何工作的&#xff0c;以及RAG技术是什么。本节我们我们将使用 LangChain 库以及 RAG 和嵌入技术在 Python 中构建一个简单的 LLM 应用程序。 我们将使用 LangChain 库在 Python 中构建一个简单的 LLM 应用程序。LangChai…

Python高效数据分析的综合复习指南【时间处理与机器学习】

五、时间处理 一、时间戳-----Timestamp类型 方法1&#xff1a;使用Timestamp创建 pandas.Timestamp(ts_input, freqNone, tzNone, unitNone, yearNone, monthNone, dayNone, hourNone, minuteNone, secondNone, microsecondNone, tzinfoNone, offsetNone) import pandas a…

ICML 2024 时空数据(Spatial-Temporal)论文总结

2024ICML&#xff08;International Conference on Machine Learning&#xff0c;国际机器学习会议&#xff09;在2024年7月21日-27日在奥地利维也纳举行 &#xff08;好像ICLR24现在正在维也纳开&#xff09;。 本文总结了ICML 24有关时空数据(Spatial-temporal) 的相关论文…

机器学习预测-CNN数据预测示例

介绍 这段代码是一个基于 TensorFlow 和 Keras 的深度学习模型&#xff0c;用于进行数据的回归任务。让我逐步解释一下&#xff1a; 导入必要的库&#xff1a;这里导入了 NumPy 用于数值计算&#xff0c;Pandas 用于数据处理&#xff0c;Matplotlib 用于绘图&#xff0c;Tenso…

Docker学习(3):镜像使用

当运行容器时&#xff0c;使用的镜像如果在本地中不存在&#xff0c;docker 就会自动从 docker 镜像仓库中下载&#xff0c;默认是从 Docker Hub 公共镜像源下载。 一、列出镜像列表 可以使用 docker images 来列出本地主机上的镜像。 各个选项说明&#xff1a; REPOSITORY&am…

AI大模型:大数据+大算力+强算法

前言&#xff1a;好久不见&#xff0c;甚是想念&#xff0c;我是辣条&#xff0c;我又回来啦&#xff0c;兄弟们&#xff0c;一别两年&#xff0c;还有多少老哥们在呢&#xff1f; 目录 一年半没更文我干啥去了&#xff1f; AI大模型火了 人工智能 大模型的理解 为什么学习…

H5扫描二维码相关实现

H5 Web网页实现扫一扫识别解析二维码&#xff0c;就现在方法的npm包就能实现&#xff0c;在这个过程中使用过html5-qrcode 和 vue3-qr-reader。 1、html5-qrcode的使用 感觉html5-qrcode有点小坑&#xff0c;在使用的时候识别不成功还总是进入到错误回调中出现类似NotFoundExc…

MFC密码对话框之间数据传送实例(源码下载)

新建一个login工程项目对话框&#xff0c;主对话框IDD_LOGIN_DIALOG中一个显示按钮IDC_BUTTON1、一个密码按钮IDC_BUTTON2。添加一个密码对话框IDD_DIALOG1&#xff0c;添加类password&#xff0c;在对话框中添加一个编辑框IDC_EDIT1、一个确定按钮IDC_BUTTON1。 程序功能&…

Java进阶学习笔记13——抽象类

认识抽象类&#xff1a; 当我们在做子类共性功能抽取的时候&#xff0c;有些方法在父类中并没有具体的体现&#xff0c;这个时候就需要抽象类了。在Java中&#xff0c;一个没有方法体的方法应该定义为抽象方法&#xff0c;而类中如果有抽象方法&#xff0c;该类就定义为抽象类…

IOS开发者证书快捷申请

App Uploader 在进行iOS应用开发中,可以借助appuploader辅助工具进行证书制作、上传和安装测试等操作。首先,您需要访问官方网站获取最新版本的appuploader。最新版本已经优化了与Apple账号的登录流程,无需支付688元,并提供了Windows版和Mac版供用户选择。下载完成后,解压…

c++编程14——STL(3)list

欢迎来到博主的专栏&#xff1a;c编程 博主ID&#xff1a;代码小豪 文章目录 list成员类型构造、析构、与赋值iterator元素访问修改元素list的操作 list list的数据结构是一个链表&#xff0c;准确的说应该是一个双向链表。这是一个双向链表的节点结构&#xff1a; list的使用…

Java轻松转换Markdown文件到Word和PDF文档

Markdown 凭借其简洁易用的特性&#xff0c;成为创建和编辑纯文本文档的常用选择。但某些时候我们需要更加精致的展示效果&#xff0c;例如在专业分享文档或打印成离线使用的纸质版时&#xff0c;就需要将Markdown文件以其他固定的文档格式呈现。通过将 Markdown 转换为 Word 和…

PostgreSQL用户与角色简述

简述 PostgreSQL通过角色&#xff08;role&#xff09;来控制数据库的访问权限。角色可以拥有数据库对象&#xff08;比如表、函数等&#xff09;&#xff0c;并允许将这些对象的权限授予其他角色&#xff0c;从而实现对象访问的控制。角色&#xff08;role&#xff09;包含了…

llama3-8b-instruct-262k微调过程的问题笔记(场景为llama论文审稿)

目录 一、环境配置 1.1、模型 1.2、微调环境 1.3、微调数据 二、发现的问题 2.1、过拟合问题 2.2、Qlora zero3 保存模型时OOM问题(已解决) 一、环境配置 1.1、模型 llama3-8b-instruct-262k &#xff08;英文&#xff09; 1.2、微调环境 Package Version ------------------…

军队仓库管理系统|DW-S301系统特点

部队仓库管理系统DW-S301系统通过数据采集、互联网和物联网技术&#xff0c;实现数字化智能管控&#xff0c;以提高军用物资的仓储准确率和流转率&#xff0c;缩短周转时间&#xff0c;降低库存成本&#xff0c;也有助于消除生产过程中的不确定性。 系统功能&#xff1a;通过部…

ComfyUI完全入门:图生图局部重绘

大家好&#xff0c;我是每天分享AI应用的萤火君&#xff01; 这篇文章的主题和美女有关&#xff0c;不过并不是教大家生产美女视频&#xff0c;而是讲解 ComfyUI 的图生图局部重绘&#xff0c;其中将会以美女图片为例&#xff0c;来展示局部重绘的强大威力。 先看看效果&…

STM32学习和实践笔记(30):窗口看门狗(WWDG)实验

1.WWDG介绍 1.1 WWDG简介 上一章我们已经介绍了IWDG&#xff0c;知道它的工作原理就是一个12位递减计数器不断递减计数&#xff0c;当减到0之前还未进行喂狗的话&#xff0c;产生一个MCU复位。 窗口看门狗WWDG其实和独立看门狗类似&#xff0c;它是一个7位递减计数器不断的往…