需求响应+配网重构!含高比例新能源和用户需求响应的配电网重构程序代码!

news2024/11/14 13:49:07

前言

配电网重构作为配电网优化运行的手段之一,通过改变配电网的拓扑结构,以达到降低网损、改善电压分布、提升系统的可靠性与经济性等目的。近年来,随着全球能源消耗快速增长以及环境的日趋恶化,清洁能源飞速发展,分布式电源(Distributed Generator, DG)大量接入配电网中。DG因其随机性和波动性,大量接入给配电网带来巨大冲击,也给配电网重构带来严峻的挑战,因此有必要研究适用于高比例清洁能源接入下的配电网重构方法。在配电网中采用需求响应策略,可以在降低负荷峰谷差的同时,减少配电网运行的综合成本,提高配电网运行的经济性和可靠性。

重构模型及配网结构

目标函数

以提高清洁能源的消纳率、减小配电网的运行成本为目标,本文在高比例清洁能源接入背景下提出了考虑需求响应的配电网重构模型。该模型的目标函数为配电网综合运行成本最小,其中考虑了网损成本、弃风弃光成本以及分段开关操作惩罚成本。

约束条件

(1)节点功率平衡约束;(2)节点电压约束;(3)之路电流约束;(4)DG功率约束;

(5)网络结构约束;(6)储能电池充放电状态及功率约束;(7)储能电池剩余容量约束;

(8)电容器投切约束;(9)需求响应约束;

配网结构

以含DG和储能(ES)的IEEE33节点配电网为例进行算例分析,算例网络结构如下图所示,系统的网络与线路参数可参考文献。图中,实线为支路,虚线为联络开关;节点编号标于图中;系统最大负荷3715kW+2300kvar。

程序介绍

程序提出了高比例清洁能源接入下计及需求响应的配电网重构方法。首先,以考虑网损成本、弃风弃光成本和开关操作惩罚成本的综合成本最小为目标,建立高比例清洁能源接入下计及需求响应的配电网重构模型。然后,针对配电网重构模型的非凸性,引入中间变量并对其进行二阶锥松弛,构建混合整数凸规划模型,使其能够在获得全局最优解的同时提高求解效率。最后,采用改进的IEEE33节点配电网进行算例仿真,分析了需求响应措施和清洁能源渗透率对配电网重构结果的影响。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,足以撑起一篇高水平论文!下面对程序做简要介绍!

程序适用平台:Matlab+Yalmip+Cplex

参考文献:《高比例清洁能源接入下计及需求响应的配电网重构》-电力系统保护与控制;

程序结果

部分程序

%% 约束条件​Constraints = [];
%% 1.潮流约束
m_ij=(1-alpha_ij)*M*ones(1,T); 
Constraints = [Constraints, P_g-P_cur+branch_to_node*P_ij-branch_to_node*(I_ij.*r_ij)-branch_from_node*P_ij == 0];
Constraints = [Constraints, Q_g-Q_load+branch_to_node*Q_ij-branch_to_node*(I_ij.*x_ij)-branch_from_node*Q_ij == 0];
Constraints = [Constraints,U_i(mpc.branch(:,1),:)-U_i(mpc.branch(:,2),:)<= m_ij + 2*r_ij.*P_ij + 2*x_ij.*Q_ij - ((r_ij.^2 + x_ij.^2)).*I_ij];
Constraints = [Constraints,U_i(mpc.branch(:,1),:)-U_i(mpc.branch(:,2),:)>= -m_ij + 2*r_ij.*P_ij + 2*x_ij.*Q_ij - ((r_ij.^2 + x_ij.^2)).*I_ij];​
Constraints = [Constraints, Sij_max^2*alpha_ij*ones(1,T) >= P_ij.^2+Q_ij.^2];
Constraints = [Constraints, I_max.^2.*alpha_ij*ones(1,T) >= I_ij , I_ij >= 0];
Constraints = [Constraints, Umin*ones(1,T) <= U_i,U_i <= Umax*ones(1,T)];​
%% 2.拓扑约束
Constraints = [Constraints , sum(alpha_ij) == nb-ns];
Constraints = [Constraints , P_g_dot(2:33) == 0 , P_g_dot(1) <= nb];
Constraints = [Constraints , P_g_dot-P_L_dot+branch_to_node*P_ij_dot-branch_from_node*P_ij_dot == 0];​
%% 3.DG功率约束
Constraints = [Constraints , P_pv >= 0 , P_wind >= 0];
Constraints = [Constraints , P_pv <= ones(n_pv,1)*P_pv_max , P_wind <= ones(n_wind,1)*P_wind_max];​
%% 4.储能约束
Constraints = [Constraints , P_ch >= 0 , P_dis >= 0 , y_ch+y_dis <= 1];
Constraints = [Constraints , P_ch <= y_ch*P_ch_max , P_dis <= y_dis*P_dis_max];
Constraints = [Constraints , E_ESS(:,1) ==n_ch*P_ch(:,1)-1/n_dis*P_dis(:,1)+E0];
Constraints = [Constraints , E_ESS >= E_min , E_ESS <= E_max];​
​​Constraints = [Constraints , E_ESS(:,t) ==n_ch*P_ch(:,t)-1/n_dis*P_dis(:,t)+E_ESS(:,t-1)];

部分内容源自网络,侵权联系删除!

欢迎感兴趣的小伙伴关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1693753.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线性回归模型

目录 1.概述 2.线性回归模型的定义 3.线性回归模型的优缺点 4.线性回归模型的应用场景 5.线性回归模型的未来展望 6.小结 1.概述 线性回归是一种广泛应用于统计学和机器学习的技术&#xff0c;用于研究两个或多个变量之间的线性关系。在本文中&#xff0c;我们将深入探讨…

GM Bali,OKLink受邀参与Polygon AggIsland大会

5月16日-17日&#xff0c;OKLink 受到生态合作伙伴 Polygon 的特别邀请&#xff0c;来到巴厘岛参与以 AggIsland 为主题的大会活动并发表演讲&#xff0c;详细介绍 OKLink 为 Polygon 所带来的包括多个浏览器和数据解析等方面的成果&#xff0c;并与 Polygon 一起&#xff0c;对…

【maven与tomcat配置】如何正确配置maven及tomcat环境变量及运行Java项目 (附图文说明及下载包)

maven及tomcat配置详解 &#x1f354;涉及知识&#x1f964;写在前面&#x1f367;一、maven和tomcat是啥&#xff1f;&#x1f367;二、maven环境变量配置2.1获取maven包2.2创建本地仓库及修改配置A&#xff0e;校验是否安装javaB&#xff0e;创建本地maven存放仓库C&#xff…

C++vector的简单模拟实现

文章目录 目录 文章目录 前言 一、vector使用时的注意事项 1.typedef的类型 2.vector不是string 3.vector 4.算法sort 二、vector的实现 1.通过源码进行猜测vector的结构 2.初步vector的构建 2.1 成员变量 2.2成员函数 2.2.1尾插和扩容 2.2.2operator[] 2.2.3 迭代器 2…

OpenHarmony系统使用gdb调试init

前言 OpenAtom OpenHarmony&#xff08;简称“OpenHarmony”&#xff09;适配新的开发板时&#xff0c;启动流程init大概率会出现问题&#xff0c;其为内核直接拉起的第一个用户态进程&#xff0c;问题定位手段只能依赖代码走读和增加调试打印&#xff0c;初始化过程中系统崩溃…

单片机设计注意事项

1.电源线可以30mil走线&#xff0c;信号线可以6mil走线 2.LDO推荐 SGM2019-3.3,RT9013,RT9193,1117-3.3V。 3.单片机VCC要充分滤波后再供电&#xff0c;可以接0.1uf的电容 4.晶振附件不要走其他元件&#xff0c;且放置完单片机后就放置晶振&#xff0c;晶振靠近X1,X2。

【C++】d1

关键字&#xff1a; 运行、前缀、输入输出、换行 运行f10 前缀必须项&#xff1a; #include <iostream> using namespace std; 输入/输出&#xff1a; cin >> 输入 cout << 输出 语句通过>>或<<分开 换行 endl或者"\n"

前端日志收集(monitor-report v1)

为什么 为什么自己封装而不是使用三方 类似 Sentry 这种比较全面的 因为 Sentry 很大我没安装成功&#xff0c;所有才自己去封装的 为什么使用 可以帮助你简单解决前端收集错误日志、收集当前页面访问量&#xff0c;网站日活跃&#xff0c;页面访问次数&#xff0c;用户行…

Spring ----> IOC

文章目录 一、 Spring 是一个包含众多工具的IoC容器二、 什么是IOC以及好处三、 如何实现loc思想四、Spring提供的实现loC的方法 --- 类注解方法注解4.1 类注解类注解概念介绍类注解的使用 4.2 方法注解Bean 一、 Spring 是一个包含众多工具的IoC容器 场景解析&#xff1a;首先…

软件设计师备考 | 案例专题之数据库设计 概念与例题

相关概念 关注上图中的两个部分&#xff1a; 概念结构设计 设计E-R图&#xff0c;也即实体-联系图。 工作步骤&#xff1a;选择局部应用、逐一设计分E-R图、E-R图合并。进行合并时&#xff0c;它们之间存在的冲突主要有以下3类&#xff1a; 属性冲突。同一属性可能会存在于…

基于hive的酒店价格数据可视化分析系统设计和实现

摘要 本文基于Django框架和Hive技术&#xff0c;设计和实现了一种酒店价格数据可视化分析系 统&#xff0c;旨在为酒店管理者提供直观、清晰的数据洞察和决策支持。在研究中&#xff0c;首先深入分 析了酒店价格数据可视化分析系统的背景和意义&#xff0c;认识到对于酒店行…

【微积分】CH16 integrals and vector fields听课笔记

【托马斯微积分学习日记】13.1-线积分_哔哩哔哩_bilibili 概述 16.1line integrals of scalar functions [中英双语]可视化多元微积分 - 线积分介绍_哔哩哔哩_bilibili 16.2vector fields and line integrals&#xff1a; work circulation and flux 向量场差不多也是描述某种…

Study--Oracle-03-Oracle19C--RAC集群部署

一、硬件信息及配套软件 1、硬件设置 RAC集群虚拟机&#xff1a;CPU:2C、内存&#xff1a;9G、操作系统&#xff1a;30G、数据库安装目录&#xff1a;100G 数据存储&#xff1a;50G &#xff08;10G*5&#xff09; 共享存储&#xff1a;2G &#xff08;1G*2&#xff09; 2…

【C++STL详解(四)------vector的模拟实现】

文章目录 vector各函数接口总览vector当中的成员变量介绍默认成员函数构造函数1构造函数2构造函数3拷贝构造函数赋值运算符重载函数析构函数 迭代器相关函数begin和end 容量和大小相关函数size和capacityreserveresizeempty 修改容器内容相关函数push_backpop_backinserterases…

面试八股之JVM篇3.6——垃圾回收——强引用、弱引用、虚引用、软引用

&#x1f308;hello&#xff0c;你好鸭&#xff0c;我是Ethan&#xff0c;一名不断学习的码农&#xff0c;很高兴你能来阅读。 ✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。 &#x1f3c3;人生之义&#xff0c;在于追求&#xff0c;不在成败&#xff0c;勤通…

Linux-命令上

at是一次性的任务&#xff0c;crond是循环的定时任务 如果 cron.allow 文件存在&#xff0c;只有在文件中出现其登录名称的用户可以使用 crontab 命令。root 用户的登录名必须出现在 cron.allow 文件中&#xff0c;如果这个文件存在的话。系统管理员可以明确的停止一个用户&am…

编程基础:掌握运算符与优先级

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、运算符的基石&#xff1a;加减乘除 二、比较运算符&#xff1a;判断数值大小 三、整除…

Postgresql源码(133)优化器动态规划生成连接路径的实例分析

物理算子的生成分为两步&#xff0c;基表的扫描路径生成set_base_rel_pathlists&#xff1b;连接路径生成&#xff08;make_rel_from_joinlist动态规划&#xff09;。本篇简单分析实现。看过代码会发现&#xff0c;“基表的扫描路径生成”其实就是作为连接路径生成dp计算的第一…

【Git】版本控制工具——Git介绍及使用

目录 版本控制版本控制系统的主要目标分类小结 分布式版本控制系统——GitGit特点Git与SVN的区别Git的工作机制 Git安装Git 团队协作机制团队内协作跨团队协作远程仓库远程仓库的作用有以下几个方面远程仓库操作流程/团队协作流程 Git分支什么是分支分支的好处 Git的常用命令Gi…

【CTF Web】CTFShow web5 Writeup(SQL注入+PHP+位运算)

web5 1 阿呆被老板狂骂一通&#xff0c;决定改掉自己大意的毛病&#xff0c;痛下杀手&#xff0c;修补漏洞。 解法 注意到&#xff1a; <!-- flag in id 1000 -->拦截很多种字符&#xff0c;连 select 也不给用了。 if(preg_match("/\|\"|or|\||\-|\\\|\/|\…