文章目录
 
  - @[toc]
- 题目描述
- 样例输入输出与解释
- 样例1
- 样例2
 
- 提示
- Python实现
- 二分查找
- 划分数组
 
 
 
 
文章目录
- @[toc]
- 题目描述
- 样例输入输出与解释
- 样例1
- 样例2
 
- 提示
- Python实现
- 二分查找
- 划分数组
 
 
 

个人主页:丷从心·
系列专栏:LeetCode
刷题指南:LeetCode刷题指南

题目描述
- 给定两个大小分别为m和n的正序(从小到大)数组nums1和nums2,请找出并返回这两个正序数组的中位数
- 算法的时间复杂度应该为O(log (m+n))
样例输入输出与解释
样例1
- 输入:nums1 = [1,3],nums2 = [2]
- 输出:2.00000
- 解释:合并数组= [1,2,3],中位数2
样例2
- 输入:nums1 = [1,2],nums2 = [3,4]
- 输出:2.50000
- 解释:合并数组= [1,2,3,4],中位数(2 + 3) / 2 = 2.5
提示
- nums1.length == m
- nums2.length == n
- 0 <= m <= 1000
- 0 <= n <= 1000
- 1 <= m + n <= 2000
- -10^6 <= nums1[i], nums2[i] <= 10^6
Python实现
二分查找
class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        def getKthElement(k):
            index1, index2 = 0, 0
            while True:
                # 特殊情况
                if index1 == m:
                    return nums2[index2 + k - 1]
                if index2 == n:
                    return nums1[index1 + k - 1]
                if k == 1:
                    return min(nums1[index1], nums2[index2])
                # 正常情况
                new_index1 = min(index1 + k // 2 - 1, m - 1)
                new_index2 = min(index2 + k // 2 - 1, n - 1)
                pivot1, pivot2 = nums1[new_index1], nums2[new_index2]
                if pivot1 <= pivot2:
                    k -= new_index1 - index1 + 1
                    index1 = new_index1 + 1
                else:
                    k -= new_index2 - index2 + 1
                    index2 = new_index2 + 1
        m, n = len(nums1), len(nums2)
        total_length = m + n
        if total_length % 2 == 1:
            return getKthElement((total_length + 1) // 2)
        else:
            return (getKthElement(total_length // 2) + getKthElement(total_length // 2 + 1)) / 2	
划分数组
class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        if len(nums1) > len(nums2):
            return self.findMedianSortedArrays(nums2, nums1)
        inf = 10 ** 6
        m, n = len(nums1), len(nums2)
        left, right = 0, m
        while left <= right:
            i = (left + right) // 2
            j = (m + n + 1) // 2 - i
            nums_im1 = (-inf if i == 0 else nums1[i - 1])
            nums_i = (inf if i == m else nums1[i])
            nums_jm1 = (-inf if j == 0 else nums2[j - 1])
            nums_j = (inf if j == n else nums2[j])
            if nums_im1 <= nums_j:
                left = i + 1
                median1, median2 = max(nums_im1, nums_jm1), min(nums_i, nums_j)
            else:
                right = i - 1
        return (median1 + median2) / 2 if (m + n) % 2 == 0 else median1



















