2024电工杯B题保姆级分析完整思路+代码+数据教学

news2025/1/12 1:46:11

2024电工杯B题保姆级分析完整思路+代码+数据教学

B题题目:大学生平衡膳食食谱的优化设计及评价 

接下来我们将按照题目总体分析-背景分析-各小问分析的形式来

总体分析:

题目要求对两份一日膳食食谱进行营养分析和调整,然后设计优化的平衡膳食食谱,并进行评价。具体步骤如下:

问题 1:膳食食谱的营养分析评价及调整

1.1 膳食营养评价

首先我们需要对附件1和附件2中的男、女大学生的膳食进行全面的营养评价。根据附件4的标准,评价内容包括能量、主要营养素含量(蛋白质、脂肪、碳水化合物等)、非产能营养素(钙、铁、锌、维生素等)及氨基酸评分等。

1.2 调整改进

基于附件3提供的食堂主要食物信息,对男、女大学生的膳食进行适当调整,使其更符合营养需求,然后再进行营养评价。

问题 2:基于附件3的日平衡膳食食谱的优化设计

2.1 目标一:蛋白质氨基酸评分最大化

建立优化模型,设计男、女大学生的日食谱,并进行膳食营养评价。

2.2 目标二:用餐费用最经济

建立优化模型,设计男、女大学生的日食谱,并进行膳食营养评价。

2.3 目标三:兼顾蛋白质氨基酸评分及经济性

建立综合优化模型,设计男、女大学生的日食谱,并进行膳食营养评价。

2.4 比较分析

对上述三种优化方案进行比较分析,找出最优方案。

问题 3:基于附件3的周平衡膳食食谱的优化设计

在问题2的基础上,分别以蛋白质氨基酸评分最大、用餐费用最经济、兼顾蛋白质氨基酸评分及经济性为目标,设计男、女大学生的周食谱,并进行评价及比较分析。

问题 4:健康饮食、平衡膳食的倡议书

基于以上分析和设计,针对大学生饮食结构及习惯,写一份健康饮食、平衡膳食的倡议书。

背景分析:

大学时代是学知识、长身体的重要阶段,这一时期的年轻人需要充足的能量和营养素来支持身体发育、脑力劳动和体育锻炼。然而,目前大学生饮食结构不合理、不良饮食习惯突出,如不吃早餐、经常食用外卖快餐等,导致营养不良或过度肥胖。解决这些问题对于大学生的生长发育和健康至关重要。

可以看到研究的对象是一名男大学生和一名女大学生,他们分别记录了一日三餐的食物摄入情况。并且还有某高校学生食堂提供的一日三餐主要食物信息。

数据文件包括3个数据集,在拆解后,我们的目标主要有以下几个:

  1. 营养分析和评价:

  • 对男、女大学生的膳食进行全面的营养分析和评价。

  • 基于高校食堂的食物信息,对膳食进行调整改进,并重新进行评价。

  • 优化设计:

  • 建立优化模型,设计男、女大学生的日食谱,目标分别为蛋白质氨基酸评分最大、用餐费用最经济、兼顾评分和经济性。

  • 在日食谱基础上,设计周食谱,并进行评价和比较分析。

  • 健康倡议书:

  • 针对大学生的饮食结构及习惯,撰写一份健康饮食、平衡膳食的倡议书。

现在就先对数据集进行预处理分析,我们以附件1为例,做数据预处理和探索性数据分析(EDA)

数据读取和展示:

import pandas as pd

# 读取数据

male_diet = pd.read_excel('/mnt/data/附件1:1名男大学生的一日食谱.xlsx')

# 展示前10行数据

male_diet_head = male_diet.head(10)

male_diet_head

数据预处理

预处理步骤包括:

  1. 检查数据的完整性,处理缺失值。

  2. 转换数据类型,确保所有数据类型正确。

  3. 计算每种食物的总量及其对应的营养素含量。

代码:

# 检查数据的基本信息

male_diet.info()

# 检查数据的描述性统计

male_diet.describe()

# 检查是否有缺失值

missing_values = male_diet.isnull().sum()

missing_values

数据处理和计算

根据每种食物的量和其营养成分表,计算总的营养素含量。

假设数据表中包括以下列:食物名称、数量(g)、蛋白质含量(g/100g)、脂肪含量(g/100g)、碳水化合物含量(g/100g)等。

# 假设有以下列

# 食物名称、数量(g)、蛋白质含量(g/100g)、脂肪含量(g/100g)、碳水化合物含量(g/100g)

# 添加总蛋白质、总脂肪、总碳水化合物列

male_diet['总蛋白质 (g)'] = male_diet['数量 (g)'] * male_diet['蛋白质含量 (g/100g)'] / 100

male_diet['总脂肪 (g)'] = male_diet['数量 (g)'] * male_diet['脂肪含量 (g/100g)'] / 100

male_diet['总碳水化合物 (g)'] = male_diet['数量 (g)'] * male_diet['碳水化合物含量 (g/100g)'] / 100

# 计算总的营养素含量

total_protein = male_diet['总蛋白质 (g)'].sum()

total_fat = male_diet['总脂肪 (g)'].sum()

total_carbs = male_diet['总碳水化合物 (g)'].sum()

# 展示总营养素含量

total_nutrients = {

'总蛋白质 (g)': total_protein,

'总脂肪 (g)': total_fat,

'总碳水化合物 (g)': total_carbs

}

total_nutrients

探索性数据分析(EDA)

  1. 食物种类和数量分布:

  • 统计不同类别食物的数量分布情况。

  • 营养素分布:

  • 分析蛋白质、脂肪、碳水化合物在整个食谱中的分布。

import matplotlib.pyplot as plt

# 食物种类和数量分布

food_types = male_diet['食物名称'].value_counts()

food_types.plot(kind='bar', title='食物种类分布')

plt.xlabel('食物名称')

plt.ylabel('数量')

plt.show()

# 营养素分布

nutrients = male_diet[['总蛋白质 (g)', '总脂肪 (g)', '总碳水化合物 (g)']]

nutrients.sum().plot(kind='bar', title='营养素分布')

plt.xlabel('营养素')

plt.ylabel('总量 (g)')

plt.show()

通过以上步骤,我们可以获得男大学生一日食谱的基本情况及其营养素分布,为后续的营养评价和优化设计打下基础。附件2类似方法可以做。下面来看问题1的分析过程

问题一分析:

针对问题一,它分为两个小问,包括对两份食谱做出全面的膳食营养评价,以及加上附件3后的调整。首先,先来解决第一小问。

膳食营养评价

我们需要对男大学生的一日膳食进行全面的营养分析评价,评价内容包括:

l 食物结构分析:检查食物种类是否齐全,是否多样化。

l 能量和主要营养素计算:计算总能量及蛋白质、脂肪、碳水化合物的摄入量。

l 非产能营养素计算:计算钙、铁、锌、维生素A、维生素B1、维生素B2、维生素C的摄入量。

l 营养素供能比分析:评价蛋白质、脂肪、碳水化合物的供能占比。

l 氨基酸评分分析:计算食谱中蛋白质的氨基酸评分。

数据预处理

首先读取数据,并检查数据的完整性和类型:

Python代码:

import pandas as pd

# 读取数据

male_diet = pd.read_excel('/mnt/data/附件1:1名男大学生的一日食谱.xlsx')

# 展示前10行数据

male_diet_head = male_diet.head(10)

print(male_diet_head)

# 检查数据的基本信息

male_diet.info()

# 检查数据的描述性统计

male_diet.describe()

# 检查是否有缺失值

missing_values = male_diet.isnull().sum()

print(missing_values)

食物结构分析

根据《中国居民膳食指南》的要求,检查食物种类是否多样化:

python

# 统计食物种类

food_types = male_diet['食物名称'].nunique()

print(f"食物种类数量: {food_types}")

# 分析食物类别是否齐全

food_categories = ['谷类', '蔬菜', '水果', '肉类', '奶类', '豆类', '油脂']

food_categories_count = male_diet['类别'].value_counts()

print(food_categories_count)

下面给大家如何用灰色综合评价法来做的示例,推荐大家使用此算法:

灰色综合评价法步骤

  1. 确定评价指标体系:

  • 选择评价膳食营养的关键指标,如总能量、蛋白质、脂肪、碳水化合物、钙、铁、锌、维生素A、维生素B1、维生素B2、维生素C等。

  • 数据标准化:

  • 对各指标数据进行无量纲化处理(标准化),以消除不同指标间量纲的影响。

  • 计算灰关联度:

  • 计算每个评价对象(食谱)与理想参考值之间的灰色关联度。

  • 计算综合关联度:

  • 根据各指标的权重,计算各评价对象的综合关联度。

  • 综合评价:

  • 根据综合关联度对各评价对象进行排序,得出综合评价结果。

实现步骤 1. 确定评价指标体系 选择男大学生膳食的关键评价指标如下:

  • 总能量 (kcal)

  • 总蛋白质 (g)

  • 总脂肪 (g)

  • 总碳水化合物 (g)

  • 钙 (mg)

  • 铁 (mg)

  • 锌 (mg)

  • 维生素A (μg)

  • 维生素B1 (mg)

  • 维生素B2 (mg)

  • 维生素C (mg)

2. 数据标准化 标准化处理可以采用极差标准化方法:

添加图片注释,不超过 140 字(可选)

假设数据已经在前面的步骤中计算完成,以下代码将实现数据标准化:

python

复制代码

import numpy as np

# 假设 total_nutrients 和 total_non_energy_nutrients 是已计算的营养素总量

data = {

'总能量 (kcal)': total_energy,

'总蛋白质 (g)': total_protein,

'总脂肪 (g)': total_fat,

'总碳水化合物 (g)': total_carbs,

'钙 (mg)': total_calcium,

'铁 (mg)': total_iron,

'锌 (mg)': total_zinc,

'维生素A (μg)': total_vitamin_a,

'维生素B1 (mg)': total_vitamin_b1,

'维生素B2 (mg)': total_vitamin_b2,

'维生素C (mg)': total_vitamin_c

}

# 转换为DataFrame

df = pd.DataFrame([data])

# 定义理想参考值,可以参考膳食指南的推荐摄入量

ideal_values = {

'总能量 (kcal)': 2400,

'总蛋白质 (g)': 90,

'总脂肪 (g)': 80,

'总碳水化合物 (g)': 300,

'钙 (mg)': 800,

'铁 (mg)': 12,

'锌 (mg)': 12.5,

'维生素A (μg)': 800,

'维生素B1 (mg)': 1.4,

'维生素B2 (mg)': 1.4,

'维生素C (mg)': 100

}

# 标准化处理

df_normalized = (df - df.min()) / (df.max() - df.min())

ideal_normalized = (pd.DataFrame([ideal_values]) - df.min()) / (df.max() - df.min())

print(df_normalized)

print(ideal_normalized)

然后需要计算灰色关联度:

添加图片注释,不超过 140 字(可选)

代码:

# 定义分辨系数

rho = 0.5

# 计算差异

diff = np.abs(df_normalized - ideal_normalized)

delta_min = diff.min().min()

delta_max = diff.max().max()

# 计算灰关联度

gray_relation = (delta_min + rho * delta_max) / (diff + rho * delta_max)

gray_relation_scores = gray_relation.mean(axis=1)

print(gray_relation_scores)

4. 计算综合关联度

综合关联度可以根据各指标的权重进行计算,这里假设所有指标权重相等:

# 假设所有指标权重相等

weights = np.ones(len(data.keys())) / len(data.keys())

# 计算综合关联度

comprehensive_relation_score = (gray_relation * weights).sum(axis=1)

print(comprehensive_relation_score)

5. 综合评价

根据综合关联度对膳食进行排序,得出综合评价结果:‘

# 综合评价

evaluation_result = comprehensive_relation_score.sort_values(ascending=False)

print(evaluation_result)

下面就是第一问的第二小问分析过程:

根据第一小问的营养评价结果,确定哪些营养素不足或过剩,具体包括:

  1. 总能量:是否满足推荐的每日能量摄入标准。

  2. 宏量营养素:蛋白质、脂肪、碳水化合物的供能占比是否合理。

  3. 非产能营养素:钙、铁、锌、维生素A、维生素B1、维生素B2、维生素C的摄入量是否达标。

  4. 氨基酸评分:蛋白质的氨基酸组成是否合理。

然后调整方案,可以通过以下方式进行调整:

  1. 增加或减少食物种类:

  • 增加:对于不足的营养素,通过增加相应食物种类来补充。例如,钙不足可以增加奶制品,维生素C不足可以增加水果。

  • 减少:对于过剩的营养素,通过减少相应食物种类来控制。例如,脂肪过多可以减少油脂和高脂食物的摄入。

  • 优化食物搭配:

  • 多样化:确保每天摄入的食物种类大于12种,每周摄入的食物种类大于25种,覆盖五大类食物(谷类、蔬菜、水果、肉类、奶类、豆类、油脂)。

  • 合理搭配:合理搭配不同种类的食物,以提高膳食的整体营养价值。例如,谷类和豆类搭配可以提高蛋白质的氨基酸评分。

  • 调整餐次比:

  • 能量分配:合理分配早餐、中餐和晚餐的能量摄入,推荐早餐占30%,中餐和晚餐各占35%。

具体可以用以下方式进行调整:

  1. 总能量调整:

  • 如果总能量不足:增加能量密集型食物,如全谷类、坚果、油脂等。

  • 如果总能量过多:减少高能量食物的摄入,增加低能量密度的蔬菜和水果。

  • 宏量营养素调整:

  • 蛋白质不足:增加富含蛋白质的食物,如鱼类、禽肉、豆制品。

  • 脂肪过多:减少油炸食品、肥肉,增加鱼类、坚果等优质脂肪来源。

  • 碳水化合物不足:增加全谷类食品,如燕麦、糙米。

  • 非产能营养素调整:

  • 钙不足:增加奶制品、豆制品、绿叶蔬菜。

  • 铁不足:增加红肉、肝脏、深色绿叶蔬菜,搭配维生素C丰富的食物以促进铁吸收。

  • 锌不足:增加海产品、肉类、坚果。

  • 维生素不足:增加水果、蔬菜,特别是富含维生素A、B、C的食物。

最后,通过调整食谱,重新进行膳食营养评价,确认各项营养素是否达到推荐摄入量,能量供给是否合理,氨基酸评分是否提高。

2-4问后续更新

添加图片注释,不超过 140 字(可选)

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方名片获取哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1686462.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 造数据神器Faker

大家好,在编写代码过程中,我们经常需要一些假数据来进行测试或者演示。手动创建这些数据不仅耗时,而且容易出错。幸运的是,Python有一个非常有用的库叫做Faker,它可以生成各种类型的假数据,从名字、地址到公…

ios 原生项目迁移flutter第一天环境

由于公司已经有第一个吃螃蟹的项目组,我在迁移的时候想着站在巨人的肩膀上,但是搭配环境一定要问清楚对方flutter版本,路径也要安排好,不然就不行。 对着自己的项目照着葫芦画瓢,我刚开始为了配置管理图个方便随便放&…

基于Python实现 HR 分析(逻辑回归和基于树的机器学习)【500010104】

介绍 数据集说明 此数据集包含与员工有关的综合属性集合,从人口统计细节到与工作相关的因素。该分析的主要目的是预测员工流动率并辨别导致员工流失的潜在因素。 在这个数据集中,有14,999行,10列,以及这些变量:满意度…

GPU集合通信库在B站的应用和改进

1. 背景 上篇文章 万字长文解析:大模型需要怎样的硬件算力 深入探讨了大型语言模型(LLMs)在硬件资源方面的需求和面临的挑战,详尽地阐述了如何进行大模型的硬件选型,以及在实际工作中如何根据模型的特定需求来优化硬件…

安装petalinux工具

petalinux 并不是一个特殊 Linux 内核,而是一套开发环境配置的工具,降低 uboot、内核、 根文件系统的配置的工作量,可以从 Vivado 的导出硬件信息自动完成相关软件的配置。 petalinux 是赛灵思基于 buildroot 工具链为自家处理器方便适配 Li…

每周刷题第三期

个人主页:星纭-CSDN博客 系列文章专栏:Python 踏上取经路,比抵达灵山更重要!一起努力一起进步! 目录 题目一:环形链表 题目二:删除有序数组中的重复项 题目三:有效的括号 题…

spring-boot-starter-mail 发送带附件的邮件信息

背景 项目使用的事ruoyi低代码开发平台ruoyi中有常见的web端下载excel的方式,但是这种方式是直接把输出流写到一个response中,而不是给一个outputstream,如果是给一个outputstream的话,就可以写入到一个固定的文件中去了 解决思路…

P2. 配置MySQL和用户注册登录模块

P2. 配置MySQL和用户注册登录模块 0 概述Tips1 预备知识1.1 SpringBoot 常用模块1.2 pojo层的实现1.3 mapper层的实现1.4 controller层调试CRUD 2 Spring Security2.1 Spring Security 介绍2.2 Spring Security 对接数据库2.3 密码的加密 3 Jwt验证3.1 传统Session验证方式3.2 …

Langchain-Chatchat的markdownHeaderTextSplitter使用

文章目录 背景排查步骤官方issue排查测试正常对话测试官方默认知识库Debug排查vscode配置launch.json命令行自动启动condadebug知识库搜索测试更换ChineseRecursiveTextSplitter分词器 结论 关于markdownHeaderTextSplitter的探索标准的markdown测试集Langchain区分head1和head…

小白跟做江科大32单片机之学习准备

1.安装好51MDK之后,出现不能正常安装支持包的情况 在线安装支持包——>在keil5软件下点击这个,即可进入更新支持包界面 进去之后找这个 国产的可以找和这个 最后有这个就可以了

【人工智能项目】小车障碍物识别与模型训练(完整工程资料源码)

实物演示效果: 一、绪论: 1.1 设计背景 小车障碍物识别与模型训练的设计背景通常涉及以下几个方面: 随着自动驾驶技术的发展,小车(如无人驾驶汽车、机器人等)需要能够在复杂的环境中自主导航。障碍物识别是实现这一目标的关键技术之一,它允许小车检测并避开路上的障碍物…

JavaScript 动态网页实例 —— 表格处理

表格是网页设计中必不可少的内容之一。本章首先介绍HTML中普通表格的组成结构,然后,在此基础上,介绍如何使用JavaScript设置表格的属性。随后,更具体地介绍操作表格元素的一般方法,主要是对表格行、列的动态增删操作。有了这些基础,在本章的最后介绍对表元的操作,即如何…

C语言 | Leetcode C语言题解之第108题将有序数组转换为二叉搜索树

题目: 题解: struct TreeNode* helper(int* nums, int left, int right) {if (left > right) {return NULL;}// 选择任意一个中间位置数字作为根节点int mid (left right rand() % 2) / 2;struct TreeNode* root (struct TreeNode*)malloc(sizeo…

生产制造边角料核算说明及ODOO演示

今天群里有伙伴提到边角料的处理问题,我们梳理了一下,在生产过程中,如果产生了边角料,核算产成品的投料成本时需要考虑边角料的价值,以确保成本核算的准确性。以下是注意的几点: 一、边角料的入账价值 在生…

poi操作word模板,对原有的word修改

/*** 化工园区调查表** param templatePath* param outPath* param parkInterview*/public static String getDocx(String templatePath, String outPath, ParkInterview parkInterview){File file new File(templatePath);File file1 new File(outPath);if(!file1.exists()…

初识C语言——第二十五天

函数的嵌套调用和链式访问 函数不可以嵌套定义&#xff0c;但可以嵌套调用 链式访问&#xff1a;把一个函数的返回值作为另外一个函数的参数 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>//写一个函数&#xff0c;每调用一次这个函数&#xff0c;就会 将num…

ArcGIS批量更改所有符号的格式

这期谈一下&#xff0c;如何修改所有符号的样式。 比如&#xff0c;我们需要更改下图的面符号位无轮廓的 该如何批量修改的呢&#xff1f; 视频教学吧&#xff1a; ArcGIS批量更改所有符号的格式 ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放-CSDN博客文章浏览阅…

OracleDG原理

一、DataGuard架构介绍 1、基本介绍 在DG环境中&#xff0c;至少会有两个数据库&#xff0c;一个数据库处于Open状态&#xff0c;对外提供服务&#xff0c;这个数据库叫做primary Database。第二个数据库处于恢复状态&#xff0c;叫做Standby Database。运行时Primay Databas…

C# 正则表达式使用小计

此文档用于记录平时使用正则表达式的心得&#xff0c;不定期更新 基础 实例 替换实例一 //这里匹配以 “( 开头,以 )” 结尾的字符串 private static Regex REGEX_ARG_CONTENT new Regex("""(.*?)""");//此方法用于在匹配到的结果前添加字符…

TG5032CGN TCXO 超高稳定10pin端子型适用于汽车动力转向控制器

TG5032CGN TCXO / VC-TCXO是一款应用广泛的晶振&#xff0c;具有超高稳定性&#xff0c;CMOS输出和使用晶体基振的削波正弦波输出形式。且有低相位噪声优势&#xff0c;是温补晶体振荡器(TCXO)和压控晶体振荡器(VCXO)结合的产物&#xff0c;具有TCXO和VCXO的共同优点&#xff0…