内存屏障 - LINUX KERNEL MEMORY BARRIERS 上 与 下

news2024/11/26 16:43:50

内存屏障(Memory Barrier)是在计算机体系结构中使用的一种同步机制,用于确保在多线程或多核处理器环境中,对共享内存的操作按照预期顺序进行。它们通过强制在特定点执行一些指令来规定内存访问的顺序,并防止内存乱序执行带来的不一致性问题。

内存屏障分为两种类型:读屏障(Read Barrier)和写屏障(Write Barrier)。

读屏障用于确保在读操作之前,所有该读操作之前的写操作已经完成。它可以防止指令乱序执行,保证读取到的数据是最新的。

写屏障用于确保在写操作之前,所有该写操作之前的写操作和读操作都已经完成。它可以防止指令乱序执行,保证写入的数据不会被其他操作覆盖或丢失。

内存屏障的使用能够解决多线程或多核处理器中的原子性、可见性和有序性等问题,确保程序的正确性和一致性。在编写并发程序时,合理地使用内存屏障可以提高程序的性能和正确性。

void foo(void)
{
	a = 1;
	smp_mb();
	b = 1;
}
 
void bar(void)
{
	while (b == 0) continue;
	assert(a == 1);
}

https://www.kernel.org/doc/Documentation/memory-barriers.txticon-default.png?t=N7T8https://www.kernel.org/doc/Documentation/memory-barriers.txt

Consider the following abstract model of the system:

		            :                :
		            :                :
		            :                :
		+-------+   :   +--------+   :   +-------+
		|       |   :   |        |   :   |       |
		|       |   :   |        |   :   |       |
		| CPU 1 |<----->| Memory |<----->| CPU 2 |
		|       |   :   |        |   :   |       |
		|       |   :   |        |   :   |       |
		+-------+   :   +--------+   :   +-------+
		    ^       :       ^        :       ^
		    |       :       |        :       |
		    |       :       |        :       |
		    |       :       v        :       |
		    |       :   +--------+   :       |
		    |       :   |        |   :       |
		    |       :   |        |   :       |
		    +---------->| Device |<----------+
		            :   |        |   :
		            :   |        |   :
		            :   +--------+   :
		            :                :

(memory barriers logically act on the dotted line in the following diagram):

	    <--- CPU --->         :       <----------- Memory ----------->
	                          :
	+--------+    +--------+  :   +--------+    +-----------+
	|        |    |        |  :   |        |    |           |    +--------+
	|  CPU   |    | Memory |  :   | CPU    |    |           |    |        |
	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
	|        |    | Queue  |  :   |        |    |           |--->| Memory |
	|        |    |        |  :   |        |    |           |    |        |
	+--------+    +--------+  :   +--------+    |           |    |        |
	                          :                 | Cache     |    +--------+
	                          :                 | Coherency |
	                          :                 | Mechanism |    +--------+
	+--------+    +--------+  :   +--------+    |           |    |	      |
	|        |    |        |  :   |        |    |           |    |        |
	|  CPU   |    | Memory |  :   | CPU    |    |           |--->| Device |
	|  Core  |--->| Access |----->| Cache  |<-->|           |    |        |
	|        |    | Queue  |  :   |        |    |           |    |        |
	|        |    |        |  :   |        |    |           |    +--------+
	+--------+    +--------+  :   +--------+    +-----------+
	                          :
	                          :

Cache 一致性问题出现的原因是在一个多处理器系统中,每个处理器核心都有独占的Cache 系统(比如一级 Cache 和二级 Cache),而导致一个内存块在系统中同时可能有多个备份,从而引起访问时的不一致性问题。
 
Cache 一致性问题的根源是因为存在多个处理器独占的 Cache,而不是多个处理器。它的限制条件比较多:多核,独占 Cache,Cache 写策略。当其中任一个条件不满足时便不存在cache一致性问题。

 

 

read: 包含要读取的CACHE-LINE的物理地址
read response: 包含READ请求的数据,要么由内存满足要么由cache满足
invalidate: 包含要invalidate的cache-line的物理地址,所有其他cache必须移除相应的数据项
invalidate ack: 回复消息
read invalidate: 包含要读取的cache-line的物理地址,同时使其他cache移除该数据。需要read response和invalidate ack消息
writeback:包含要写回的数据和地址,该状态将处于modified状态的lines写回内存,为其他数据腾出空间

 

void foo(void)
{
    a = 1;
    smp_mb();
    b = 1;
}

smp_mb()指令可以迫使CPU在进行后续store操作前刷新store-buffer。以上面的程序为例,增加memory barrier之后,就可以保证在执行b=1的时候CPU0-store-buffer中的a已经刷新到cache中了,此时CPU1-cache中的a 必然已经标记为invalid。对于CPU1中执行的代码,则可以保证当b==0为假时,a已经不在CPU1-cache中,从而必须从CPU0- cache传递,得到新值“1”

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1671408.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL的msi格式安装

一、下载链接 MySQL :: Download MySQL Installer (Archived Versions) 二、安装步骤 ①选择自定义安装 ②选择要安装的产品 ③安装依赖环境 ④安装 ⑤点击下一步 ⑥配置 ⑦设置密码 ⑧命名 ⑨数据存放路径 ⑩安装配置 ①①配置环境变量 ①②验证 方法一&#xff1a; 方法二…

触摸OpenNJet,云原生世界触手可及

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” 文章目录 导言OpenNJet云原生引擎介绍云原生平台的介绍优化与创新 为什么选择OpenNJet云原生引擎如何在windo…

探索未知:风靡硅谷开发者的 Unstructured Data Meetup 即将登陆中国

“最硅谷”的 Unstructured Data Meetup 即将来袭&#xff01; 众所周知&#xff0c;AI 三要素包括&#xff1a;算力、算法和数据。数据的价值愈发凸显&#xff0c;而其中非结构化数据更是备受关注。IDC 预测&#xff0c;到 2025 年&#xff0c;全球数据总量中将有超过 80% 的数…

Unreal Engine插件打包技巧

打开UE工程&#xff0c;点击编辑&#xff0c;选择插件&#xff0c;点击"打包"按钮&#xff0c;选择输出目录UE4.26版本打包提示需要VS2017问题解决 1&#xff09;用记事本打开文件【UE4对应版本安装目录\Epic Games\UE_4.26\Engine\Build\BatchFiles\RunUAT.bat】 2&…

cookie、session、token、表单、json、jsonp、websocket、ajax都是什么

前后端数据交互的几种方式 1.cookie Cookie是服务器保存在客户端的一小段数据&#xff0c;&#xff08;使用Cookie的前提是客户端浏览器允许使用Cookie并对此做出相应的设置。&#xff09; cookie是一种存储在用户计算机上的小型数据文件&#xff0c;常用于在web应用程序中跟…

【计算机网络】数据链路层 组帧 习题4

组帧 发送方根据一定的规则将网络层递交的分组封装成帧(也称为组帧)。 组帧时&#xff0c;既要加首部&#xff0c;也要加尾部&#xff0c;原因是&#xff0c;在网络信息中&#xff0c;帧是以最小单位传输的。所以接收方要正确地接收帧&#xff0c;就必须清楚该帧在一串比特串中…

Python如何绘制直流电机开闭环特性曲线?matplotlib

import matplotlib.pyplot as plt from pylab import mplmpl.rcParams[font.sans-serif] [FangSong] # 指定默认字体 mpl.rcParams[axes.unicode_minus] False # 解决保存图像是负号-显示为方块的问题# 数据集1 n1 [1206, 1174, 1141, 1116, 1037, 986] Id1 [0.505, 0.55…

实训一:设计系统主页作业

1.题目 设计系统主页。 2.目的 (1)熟悉Web前端项目开发环境。 (2)掌握如何建立Web前端项目&#xff0c;学会规划项目结构。 (3)掌握动态生成页面内容的方法。 (4)理解如何使用Flash显示图片新闻。 (5)会在应用系统中编写播放动态新闻的程序。 3.内容 建立项目结构&#xff0c;并…

户外无比精彩 ,体育无处不在!CISP深圳国际体育展官宣2025年重磅来袭

CISP深圳国际体育展【 同期举办&#xff1a;COSP深圳国际户外展 】 时间&#xff1a;2025年2月27-3月1日 地点&#xff1a;深圳&#xff08;福田会展中心&#xff09; 主办单位&#xff1a;东莞市体育产业协会 协办单位&#xff1a;中国户外探险联盟 深圳市登山户外运动协…

无人机+通信中继:短波电台技术详解

随着无线通信技术的不断发展&#xff0c;无人机作为一种新型的信息传输平台&#xff0c;已经在多个领域得到了广泛应用。其中&#xff0c;无人机与短波电台的结合&#xff0c;为通信中继领域带来了全新的可能性。本文将详细解析无人机在通信中继中的应用&#xff0c;以及短波电…

ASP.NET医药进销存系统

摘 要 目前&#xff0c;大中型城市的多数药品店已经实现了商品管理、客户管理、销售管理及销售管理等的信息化和网络化&#xff0c;提高了管理效率。但是&#xff0c;在大多数小药品店&#xff0c;药品店管理仍然以传统人工管理为主&#xff0c;特别是在药品的采购、销售、库…

Q1咖啡机行业线上市场(京东天猫淘宝)销售数据分析

回顾疫情那几年&#xff0c;咖啡机市场可能是大环境带动下爆发飞速的品类之一。在整体厨房小家电大盘销售不佳的情况下&#xff0c; 咖啡机市场的表现是亮眼的。而今年Q1季度&#xff0c;在厨卫小电市场整体低迷的状态下&#xff0c;咖啡机市场依然保持着稳中向好的趋势。 根据…

哈希重要思想——位图详解

一&#xff0c;概念 所谓位图&#xff0c;就是用每一位来存放某种状态&#xff0c;适用于海量数据&#xff0c;数据无重复的场景。通常是用来判断某个数据存不存在的。 为了方便理解我们引入一道面试题&#xff0c; 给40亿个不重复的无符号整数&#xff0c;没排过序。给一个无…

形位公差Overview of GDT

零件公差产生于十九世纪后期&#xff0c;其初衷是为了保证零件的互换性。起初只有尺寸公差。由于 当时的设计部门和制造部门通常都在一起或就在隔壁&#xff0c;因此交流起来非常方便。在当时&#xff0c;给 定的公差一般都很大&#xff0c;因此当时的设备刀具的能力对于保证产…

【C++要哮着学】初识C++,什么是C++?什么是命名空间?什么又是缺省函数?

文章目录 前言1、C简介1.1、什么是C1.2、C起源1.3、C发展 2、C关键字&#xff08;C98&#xff09;3、命名空间3.1、命名空间的定义及使用3.2、命名空间的嵌套3.3、命名空间的三种使用方式3.3.1、加命名空间名称及作用域限定符3.3.2、使用using将命名空间中某个成员引入3.3.3、使…

【MySQL的内外连接】

文章目录 一、内连接二、外连接1.左外连接2.右外连接 一、内连接 基本语法&#xff1a; select 字段 from 表1 inner join 表2 on 连接条件 and 其他条件&#xff1b;&#xff08;这里的and&#xff0c;也可以修改成where&#xff0c;并且建议使用where&#xff0c;逻辑更清晰…

何为LCA(最近共同祖先)?

原篇&#xff1a;&#xff08;ACM算法&#xff09;tarjan算法求LCA - 知乎 (zhihu.com) 顾名思义&#xff0c;就是求两个节点最近的共同祖先&#xff0c;就好比下图&#xff0c;2和3的共同祖先为3&#xff0c;2和4的共同祖先为1。 关于LCA求解有3种算法。 1.标记回溯法&#…

2024期从、证从、基从、银从备考资料及互助交流群

快进&#xff0c;2024年 金融考证备考资料及互助交流备考群&#xff0c;考啥进啥 5.12 &#xff08;基从&#xff09;基金从业资格考试 5.18&#xff08;期从&#xff09;期货从业资格考试 6.1 &#xff08;证从&#xff09;证券从业资格考试 6.1&#xff5e;6.2&#xff08;银…

MySQL从入门到高级 --- 6.函数

文章目录 第六章&#xff1a;6.函数6.1 聚合函数6.2 数学函数6.3 字符串函数6.4 日期函数6.4.1 日期格式 6.5 控制流函数6.5.1 if逻辑判断语句6.5.2 case when语句 6.6 窗口函数6.6.1 序号函数6.6.2 开窗聚合函数6.6.3 分布函数6.6.4 前后函数6.6.5 头尾函数6.6.6 其他函数6.7 …

Offer必备算法38_贪心算法四_八道力扣题详解(由易到难)

目录 ①力扣56. 合并区间 解析代码 ②力扣435. 无重叠区间 解析代码 ③力扣452. 用最少数量的箭引爆气球 解析代码 ④力扣397. 整数替换 解析代码1_递归改记忆化搜索 解析代码2_贪心策略 ⑤力扣354. 俄罗斯套娃信封问题 解析代码1_动态规划&#xff08;超时&#xf…