自动控制原理学习--平衡小车的控制算法(三)

news2024/11/26 0:30:32

上一节PID的simulin仿真,这一节用LQR

一、模型

             

二、LQR

LQR属于现代控制理论的一个很重要的点,这里推荐B站的【Advanced控制理论】课程(up主DR_CAN),讲得很好,这里引用了他视频里讲LQR的ppt。

LQR属于lost优化问题,L:Linear ;Q:Quadratic二次型;R:regulater 调制器

主要是优化状态空间下,保证稳定的同时,如何选取状态方程特征值。

Q一般是根据你想控制那些状态给出不同权重的矩阵,就是一个对角矩阵,按顺序对状态量给出权重,给的数值越大,代表你对对应的状态控制要求也高,R是输入是N*1的矩阵,一般只有一维输入的话就一个数,越大表示对输入的控制要求更高。

二、平衡小车LQR

由于需要有状态转移矩阵和输入系数矩阵,所以需要建立动力学模型,建模方法很多(一般常用的是牛顿力分析和拉格朗日方程)

1.牛顿力学分析方程

(1)底盘只有水平方向的移动,故运动方程只有在x方向,

假设小车的摩擦系数为b,由m*a=F公式可得:

m \ddot{x}=F-b \dot{x}-N   其中N为车身(摆杆)对底盘在x方向的反作用力    (1)

(2)车身(摆杆)受力分析:

某一时刻单摆在水平上的位置:

x^{\prime}=x-l \cdot \sin (q)         

单摆在水平方向所收到的力只有N,所以水平方向的运动方程:

\boldsymbol{M} \ddot{\boldsymbol{x}}^{\prime }=\boldsymbol{N}

\boldsymbol{M} \left(\boldsymbol{x}-\boldsymbol{l} \cdot \sin (q)\right)^{\prime \prime}=\boldsymbol{N}

N=M \ddot{x}-M l \ddot{q} \cos (q)+M l \dot{q}^{2} \sin (q)                           (2)

由(2)带入(1)可得第一个运动方程

F=(M+m) \ddot{x}+b \dot{x}-M l \ddot{q} \cos (q)+M l \dot{q}^{2} \sin (q)           (3)

对单摆在垂直方向的受力分析

\begin{array}{l} \boldsymbol{M} \ddot{y}^{\prime }=\boldsymbol{P}-\boldsymbol{M} g \\ y= l cos(q)\\ \ddot{y}^{\prime }=-\ddot{q} \sin (q)-\dot{q}^{2} \cos(q) \\ \boldsymbol{M} l\left(-\ddot{q} \sin (q)-\dot{q}^{2} \cos(q)\right)=\boldsymbol{P}-\boldsymbol{M} g \\ \boldsymbol{P} =M g-M l \ddot{q} \sin (q)-M l \dot{q}^{2} {\cos (q)}\end{array}                               (4)

摆杆质心力矩平衡可得(I是摆杆的转动惯量,规则的物体容易求,但这里我看了人家,尝试去算,但都感觉不对,看过别人的基本设定在0.005左右都可以,后面试了其他值感觉都还可以用,其实有种方法是用实物倒放,让它自由摆动后测出相关的值去推,以后有时间可以试试) :

P l \sin (q)+N l \cos (q)=I \ddot{q}                                                    (5)

把公式(2)、(4)带入(5)可得

\begin{array}{l} M g l \sin (q)-M l \ddot{q} \sin q l \sin q-M l \dot{q}^{2} \cos q l \sin q \\ =M g l \sin q-M l^{2} \ddot{q}+M \ddot{x} l \cos q= I \ddot{q} \end{array}

化简得到第二条运动学方程:

\left(I+M l^{2}\right) \ddot{q}-M g l \sin (q)=M l \ddot{x} \cos(q)                                  (6)

由(3)和(6)得到的方程组:

\left\{\begin{array}{l} F=(M+m) \ddot{x}+b \dot{x}-M l \ddot{q} \cos (q)+M l \dot{q}^{2} \sin (q)\\ \\(I+M l^{2}) \ddot{q}-M g l \sin (q)=M l \ddot{x} \cos(q) \end{array}\right.

线性化, 为小接近的小角度,q为小接近0的小角度,\dot{q} ^2\approx 0, 𝑐𝑜𝑠(q) 为1, 𝑠𝑖𝑛(q) 为0,  F施加给小车的输入,改成u表示:

\left\{\begin{array}{l} u=(M+m) \ddot{x}+b \dot{x}-M l \ddot{q} \\ \\ (I+M l^{2}) \ddot{q}-M g l q=M l \ddot{x} \end{array}\right.                                       (7)

(7)可以改写成

\ddot{x} = \frac {-b(I+M l^2) }{p} \dot{x} +\frac{M^2 g l^2}{p} q +\frac{I+M l^2}{p} u

\ddot{q} = \frac {-b M l }{p} \dot{x} +\frac{M g l (M+m)}{p} q +\frac{M l}{p} u

其中   p=I(M+m)+ Mml^2

 设状态量为   

                          \begin{bmatrix} x \\ \dot x \\ q \\ \dot q \end{bmatrix}

最终的状态空间方程模型为:

\begin{bmatrix} x \\ \dot x \\ q \\ \dot q \end{bmatrix} =\begin{bmatrix} &0 &1 &0 &0 \\ & 0 & \frac{-b(I+M l^2)}{p} & \frac{M^2gl^2}{p} &0 \\ & 0 &0 &0 &1 \\ &0 & \frac{-bMl}{p} & \frac{Mgl(M+m)}{p} &0 \end{bmatrix} * \begin{bmatrix} x \\ \dot x \\ q \\ \dot q \end{bmatrix} +\begin{bmatrix} 0\\ \frac{I+M l^2}{p} \\ 0 \\ \frac{Ml}{p} \end{bmatrix} *u

                                  状态转移矩阵A                                    输入矩阵B

由于状态量与输出反馈一致,故C矩阵为

C=\begin{bmatrix} 1 & 0& 0&0 \\ 0& 1& 0&0 \\ 0& 0& 1&0 \\ 0& 0& 0& 1 \end{bmatrix}      如果你模型里面反馈数据只有平移速度 和角度速度,那C就算2*4的矩阵

D=0

有了A B C D矩阵就可以用LQR求解 (也可以用MPC来求解,套路都一样) ,MATLAB里面有lqr的求解器,一行代码搞定.

不过还有Q  和R 超参的设置, Q可简单设置[10 0 10 0] 顺序对应的水平方向 的x 和速度, 角度q 和角速度,意思是对x 和角度q重点控制,  R=1,对输入要求一般,都可以修改,根据具体情况修改超参。

MALAB 的代码很简单

K = lqr(A,B,Q,R)

会得出K,K 是4*1的向量,然后分别与状态量点乘就得到输入u的值,即F  这就是控制量

由于系统是非时变系统,因此lqr只需求一次K就行了

通过A 和B矩阵,也可以判断系统是否可控

Tc = ctrb(A,B);
if (rank(Tc)==4)
    fprintf('此系统是可控的!\n');

如果不加外力,系统肯定是不稳定的,直接用

Tc = ctrb(A);
if (rank(Tc)==4)
    fprintf('此系统是可控的!\n');

  就可以测试,

说白就算去判断它的状态转移矩阵是否满秩,现代控制理论有相关的推导分析

simulink建模跟上一张PID的模型基本一样,只是计算输入控制量这块不一样,简单放个图:

这里的K_LQR就算lar算出来的K,这里是负反馈,因此是负号;

其他的参数主要有l取0.065m;g=9.8,车身质量M=1.25kg,底盘m=0.5kg。

算出的K为

K =[   -1.0000   -2.1447   37.5875    3.2123 ]

三、上面的牛顿力学分析运动方程很繁琐,同样是找状态转移矩阵 A 输入矩阵 B 一般直接用拉格朗日动力学方程,省事些。

这里不想再敲公式了,直接参考使用B站博主(J_H_Li)的小车倒立摆最优控制教程 视频  讲得通俗易懂,推荐去看

拉格朗日方程:

 q_j 是指某个状态量  \tau 是对应q_j 状态量的外力

分别找出系统总动能 和势能 再分别对状态量进行拉格朗日方程  

总动能

因为以底盘质点为原点,只有车身的势能,因此总势能

V=mgl cos(q)

这里的M是底盘的质量,m是摆杆的,

所以拉格朗日量

分别对x和q进行拉格朗日方程得到:

再进行线性化,q为小接近0的小角度,\dot{q} ^2\approx 0, 𝑐𝑜𝑠(q) 为1, 𝑠𝑖𝑛(q) 为0, 得到两条动力方程:

然后退出A B矩阵,F改为u,就得到

可以看到A 和 B 跟上面用牛顿受力分析得出的不一样,这里算出来的k

K =[   -1.0000   -1.9719   36.2409    1.8586 ]

但相差不大,都是可以让系统稳定的

这种方法比牛顿受力分析,找出一大堆公式要友好得多。
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1660117.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

rngd: Error writing /dev/tpm0

检查数据库时发现messages中一直有rngd报错,rngd一直未配置,直接关闭了 /var/log/messages-20240414:Apr 11 04:59:49 hydb2 rngd: Error writing /dev/tpm0 /var/log/messages-20240414:Apr 12 07:31:39 hydb2 rngd: Error writing /dev/tpm0 /var/log…

[微信小程序] 入门笔记2-自定义一个显示组件

[微信小程序] 入门笔记2-自定义一个显示组件 0. 准备工程 新建一个工程,删除清空app的内容和其余文件夹.然后自己新建pages和components创建1个空组件和1个空页面. 设定 view 组件的默认样式,使其自动居中靠上,符合习惯.在app.wxss内定义,作用做个工程. /**app.wxss**/ /* 所…

Screeps工程化之配置化

目录 前言一、抽取配置项二、读取配置项 前言 Screeps中所有代码都会在一个tick(游戏内的世间)内执行完成,想要做到代码的高度复用,和隔离各个房间creep的行为就需要将部分代码进行配置化,本文仅为作者本人的游戏思路…

一文读懂开源大数据OLAP

企业需要从海量数据中提取有价值的信息,以支持决策制定和提高运营效率,数据已成为企业最宝贵的资产之一。OLAP(在线分析处理)技术,作为数据仓库解决方案的核心组成部分,提供了一种强大的工具,帮…

python爬虫入门(所有演示代码,均有逐行分析!)

爬虫的初学者们,只看这一篇就够了,看到就是赚到! 目录 1.爬虫简介 2.版本及库的要求 3.爬虫的框架 4.HTML简介 5.爬虫库及演示 (1)requests库(网页下载器) (2)Beau…

Verilog复习(三)| Verilog语言基础

四种基本的逻辑值 0&#xff1a;逻辑0或“假”1&#xff1a;逻辑1或“真”x&#xff1a;未知z&#xff1a;高阻 三类常量 整型数&#xff1a;简单的十进制格式&#xff0c;基数格式&#xff08;5’O37&#xff0c;4’B1x_01&#xff09; 格式&#xff1a; <size><’b…

AI中转站计费平台系统源码一站式解决方案安装说明

AI中转站计费平台系统源码一站式解决方案安装说明 功能 | Features AI 联网功能 AI online searching service 多账户均衡负载 Multi-account load balancing HTTP2 Stream 实时响应功能 HTTP2 Stream real-time response function 节流和鉴权体系 Throttling and authenticati…

PCB打标机3段翻板和2段翻板的区别

随着电子技术的发展&#xff0c;电子产品的更新换代速度越来越快&#xff0c;对PCB打标机的需求也越来越大。PCB打标机是一种用于在PCB板上刻划文字、图案、条形码等信息的设备&#xff0c;广泛应用于FPC、LED灯、电源板等领域。其中&#xff0c;3段翻板和2段翻板是两种常见的P…

DBCHM 数据库 CHM 文档生成工具

介绍 DBCHM 是一款数据库文档生成工具&#xff01; 该工具从最初支持chm文档格式开始&#xff0c;通过开源&#xff0c;集思广益&#xff0c;不断改进&#xff0c;又陆续支持word、excel、pdf、html、xml、markdown等文档格式的导出。 支持的数据库 SqlServerMySQLOraclePos…

Java入门基础学习笔记2——JDK的选择下载安装

搭建Java的开发环境&#xff1a; Java的产品叫JDK&#xff08;Java Development Kit&#xff1a; Java开发者工具包&#xff09;&#xff0c;必须安装JDK才能使用Java。 JDK的发展史&#xff1a; LTS&#xff1a;Long-term Support&#xff1a;长期支持版。指的Java会对这些版…

3. 多层感知机算法和异或门的 Python 实现

前面介绍过感知机算法和一些简单的 Python 实践&#xff0c;这些都是单层实现&#xff0c;感知机还可以通过叠加层来构建多层感知机。 2. 感知机算法和简单 Python 实现-CSDN博客 1. 多层感知机介绍 单层感知机只能表示线性空间&#xff0c;多层感知机就可以表示非线性空间。…

TCP是如何实现可靠传输的 UDP面向报文 TCP面向字节流是什么意思 TCP和UDP分别适用于什么场合

UDP是用户数据报协议&#xff0c;它是一种无连接的传输层协议&#xff0c;它面向报文&#xff0c;也就是说&#xff0c;UDP对应用层交下来的报文&#xff0c;在添加UDP头之后直接发送出去&#xff0c;不会对数据进行拆分和合并。因此&#xff0c;UDP传输的数据单位是报文&#…

STM32编译前置条件配置

本文基于stm32f104系列芯片&#xff0c;记录编程代码前需要的操作&#xff1a; 添加库文件 在ST官网下载标准库STM32F10x_StdPeriph_Lib_V3.5.0&#xff0c;解压后&#xff0c;得到以下界面 启动文件 进入Libraries&#xff0c;然后进入CMSIS&#xff0c;再进入CM3&#xff…

RERCS系统-WDA+BOPF框架实战例子 PART 1-新建List UIBB(列表组件)并分配Feeder Class和Node Element

需求背景&#xff1a; 已有的项目主数据功能&#xff0c;新增一个列表UIBB显示主数据额外的关联数据明细。 1、Fiori页面通过右键-技术帮助打开对应的组件配置&#xff1b; 2、双击对应的组件配置&#xff0c;调整对应的页面新建UIBB&#xff1b; 3、填写对应的UIBB属性字段&a…

【数据结构】 二叉树的顺序结构——堆的实现

普通的二叉树是不适合用数组来存储的&#xff0c;因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储 。 一、堆的概念及结构 父节点比孩子结点大 是大堆 父节点比孩子结点小 是小堆 堆的性质 堆中某…

世界上知名度最高的人物颜廷利:精神与物质的对岸有五种类型的人

世界上知名度最高的人物颜廷利&#xff1a;精神与物质的对岸有五种类型的人 面对现实生活中的物质生活和精神生活而言&#xff0c;确切的说&#xff0c;实际上总共可以划分为五种类型的人&#xff1a; 第一种&#xff0c;隔河观望的人&#xff0c;他们总是以‘物质’&#xff0…

Matlab: ode45解微分方程——以弹簧振子模型为例

简介&#xff1a; 在科学和工程中&#xff0c;我们经常遇到描述事物变化的微分方程。这些方程可以帮助我们理解从行星运动到药物在体内的扩散等各种现象。但是&#xff0c;很多微分方程非常复杂&#xff0c;手动求解几乎不可能。这时&#xff0c;我们就可以使用像 ode45这样的…

【Linux】冯诺依曼体系

冯诺依曼体系 冯诺依曼体系结构是我们计算机组成的基本架构 中央处理器&#xff08;CPU&#xff09;&#xff1a; 中央处理器是冯诺伊曼体系的核心部分&#xff0c;负责执行计算机程序中的指令。它包括算术逻辑单元&#xff08;ALU&#xff09;和控制单元&#xff08;CU&#x…

【JavaWeb】网上蛋糕商城后台-商品管理

概念 本文讲解和实现网上蛋糕商城的后台管理系统中的商品管理功能。 商品列表 点击后台管理系统的head.jsp头部的“商品管理”功能选项&#xff0c;向服务器发送请求/admin/goods_list 因此需要在servlet包中创建AdminGoodsListServlet类&#xff0c;用于获取商品信息列表 …

拷贝构造、赋值运算符、运算符重载

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C&#xff0c;linux &#x1f525;座右铭&#xff1a;“不要等到什么都没有了…