完全背包与01背包的区别
01背包对于一个物品只能选择一次,但是完全背包可以选择任意次;
思路
和01背包类似,01背包我们只需要判断选或不选,完全背包也是如此,不同的是,对于这个物品我们在判断选后在增加一次选择的机会,直到不选,跳转至下一个物品即可;
一般代码:
f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
第k次,不选的话就是它本身,选的话就是直接选择k次即可;
当然这个代码在数据稍微大一点的时候就会超出时间限制;
#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k*v[i]<=j;k++)
{
f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
}
}
}
cout<<f[n][m]<<endl;
}
优化思路
上面代码会超出时间限制是因为三层循环,下面我们来把第三层循环优化掉:
f[i][j]=max(f[i][j],f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w)
f[i][j-v]=max( f[i][j-v],f[i-1][j-2*v]+w,f[i-1][j-3*v]+2*w......f[i-1][j-k*v]+k*w)
f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w 不就是f[i][j-v]+w
那么我们可以得到:f[i][j]=max(f[i][j],f[i-1][j-v]+w)
这样我们不就可以不用写第三层循环了吗?
直接用:
f[i][j]=f[i-1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
优化代码:
#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
}
}
cout<<f[n][m]<<endl;
}
我们来看一下核心代码:
f[i][j]=f[i-1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);还记得01背包的代码吗?
f[i][j] = f[i - 1][j];if(j>=v[i])
f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );是不是只有(红色标记):
f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );不同
再次优化代码:
注意:
这里我的j的大小是从小到大开始的:
01背包中,f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );对于f[j]就相当于f[i-1][j]的大小,如果从小到大遍历,那么f[i-1][j]的大小就会发现变化,那么优化后的代码就不满足我们所推导的公式,所以我们要从大到小;
类比于01背包,完全背包的公式, f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);对于这个公式如果从大到小就会改变f[i][j]的大小,不满足所推导的公式;
#include<iostream>
#include<cstring>
using namespace std;
const int N=1e4;
int f[N];
int w[N],v[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=0;i<n;i++)
cin>>v[i]>>w[i];
for(int i=0;i<n;i++)
{
for(int j=v[i];j<=m;j++)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
}
以上就是全部内容!!