源程序
llm.c/test_gpt2_fp32.cu at master · karpathy/llm.c (github.com)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <assert.h>
#include <float.h>
#include <string.h>
#include <unistd.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <cublasLt.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include "utils.h"
#include "tokenizer.h"
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
void cudaCheck(cudaError_t error, const char *file, int line) {
if (error != cudaSuccess) {
printf("[CUDA ERROR] at file %s:%d:\n%s\n", file, line,
cudaGetErrorString(error));
exit(EXIT_FAILURE);
}
};
#define cudaCheck(err) (cudaCheck(err, __FILE__, __LINE__))
void cublasCheck(cublasStatus_t status, const char *file, int line)
{
if (status != CUBLAS_STATUS_SUCCESS) {
printf("[cuBLAS ERROR]: %d %s %d\n", status, file, line);
exit(EXIT_FAILURE);
}
}
#define cublasCheck(status) { cublasCheck((status), __FILE__, __LINE__); }
static size_t cublaslt_workspace_size = 32 * 1024 * 1024;
static void* cublaslt_workspace = NULL;
static cublasComputeType_t cublas_compute_type;
cublasHandle_t cublas_handle;
cublasLtHandle_t cublaslt_handle;
namespace cg = cooperative_groups;
__device__ inline float4 add_float4(const float4& a, const float4& b) {
return make_float4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
}
__global__ void encoder_forward_kernel3(float4* out,
const int* inp, const float4* wte, const float4* wpe,
int B, int T, int C) {
int C4 = C / 4;
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int N = B * T * C4;
if (idx < N) {
int bt = idx / C4;
int b = bt / T;
int t = bt % T;
int c4 = idx % C4;
int ix = inp[b * T + t];
out[b * T * C4 + t * C4 + c4] = add_float4(wte[ix * C4 + c4], wpe[t * C4 + c4]);
}
}
__global__ void encoder_backward_kernel(float* dwte, float* dwpe,
const float* dout, const int* inp,
int B, int T, int C) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int N = B * T * C;
if (idx < N) {
int bt = idx / C;
int b = bt / T;
int t = bt % T;
int c = idx % C;
int ix = inp[b * T + t];
const float* dout_btc = dout + b * T * C + t * C + c;
float* dwte_ix = dwte + ix * C + c;
float* dwpe_tc = dwpe + t * C + c;
atomicAdd(dwte_ix, *dout_btc);
atomicAdd(dwpe_tc, *dout_btc);
}
}
__global__ void layernorm_forward_kernel3(float* __restrict__ out, float* __restrict__ mean, float* __restrict__ rstd,
const float* __restrict__ inp, const float* __restrict__ weight,
const float* __restrict__ bias, int N, int C) {
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
int idx = blockIdx.x * warp.meta_group_size() + warp.meta_group_rank();
if(idx >= N) {
return;
}
const float* x = inp + idx * C;
float sum = 0.0f;
for (int i = warp.thread_rank(); i < C; i += warp.size()) {
sum += x[i];
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
float m = sum / C;
if(warp.thread_rank() == 0 && mean != nullptr) {
__stcs(mean + idx, m);
}
sum = 0.0f;
for (int i = warp.thread_rank(); i < C; i += warp.size()) {
float diff = x[i] - m;
sum += diff * diff;
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
float s = rsqrtf(sum / C + 1e-5f);
if(warp.thread_rank() == 0 && rstd != nullptr) {
__stcs(rstd + idx, s);
}
float* o = out + idx * C;
for (int c = warp.thread_rank(); c < C; c += warp.size()) {
float n = s * (__ldcs(x+c) - m);
__stcs(o+c, n * weight[c] + bias[c]);
}
}
__global__ void permute_kernel(float* q, float* k, float* v,
const float* inp,
int B, int N, int NH, int d) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < B * NH * N * d) {
int b = idx / (NH * N * d);
int rest = idx % (NH * N * d);
int nh_ = rest / (N * d);
rest = rest % (N * d);
int n = rest / d;
int d_ = rest % d;
int inp_idx = (b * N * 3 * NH * d) + (n * 3 * NH * d) + (0 * NH * d) + (nh_ * d) + d_;
q[idx] = __ldcs(&inp[inp_idx]);
k[idx] = __ldcs(&inp[inp_idx + NH * d]);
v[idx] = __ldcs(&inp[inp_idx + 2 * (NH * d)]);
}
}
__global__ void permute_kernel_backward(float* dinp,
const float* dq, const float* dk, const float* dv,
int B, int N, int NH, int d) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < B * NH * N * d) {
int b = idx / (NH * N * d);
int rest = idx % (NH * N * d);
int nh_ = rest / (N * d);
rest = rest % (N * d);
int n = rest / d;
int d_ = rest % d;
int inp_idx = (b * N * 3 * NH * d) + (n * 3 * NH * d) + (0 * NH * d) + (nh_ * d) + d_;
dinp[inp_idx] = dq[idx];
dinp[inp_idx + NH * d] = dk[idx];
dinp[inp_idx + 2 * (NH * d)] = dv[idx];
}
}
__global__ void unpermute_kernel(float* inp, float *out, int B, int N, int NH, int d) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < B * NH * N * d) {
int b = idx / (NH * N * d);
int rest = idx % (NH * N * d);
int nh_ = rest / (N * d);
rest = rest % (N * d);
int n = rest / d;
int d_ = rest % d;
int other_idx = (b * NH * N * d) + (n * NH * d) + (nh_ * d) + d_;
out[other_idx] = __ldcs(&inp[idx]);
}
}
__global__ void unpermute_kernel_backward(float* dinp, const float *dout, int B, int N, int NH, int d) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < B * NH * N * d) {
int b = idx / (NH * N * d);
int rest = idx % (NH * N * d);
int nh_ = rest / (N * d);
rest = rest % (N * d);
int n = rest / d;
int d_ = rest % d;
int other_idx = (b * NH * N * d) + (n * NH * d) + (nh_ * d) + d_;
dinp[idx] = dout[other_idx];
}
}
__device__ float& vec_at(float4& vec, int index) {
return reinterpret_cast<float*>(&vec)[index];
}
__device__ float vec_at(const float4& vec, int index) {
return reinterpret_cast<const float*>(&vec)[index];
}
__global__ void softmax_forward_kernel5(float* out, float inv_temperature, const float* inp, int N, int T) {
assert(T % 4 == 0);
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
int idx = (gridDim.x - blockIdx.x - 1) * warp.meta_group_size() + warp.meta_group_rank();
if(idx >= N * T) {
return;
}
int own_pos = idx % T;
int pos_by_4 = own_pos / 4;
const float* x = inp + idx * T;
float maxval = -FLT_MAX;
float sumval = 0.0f;
const float4* x_vec = reinterpret_cast<const float4*>(x);
for (int i = warp.thread_rank(); i < pos_by_4; i += warp.size()) {
float4 v = x_vec[i];
float old_maxval = maxval;
for(int k = 0; k < 4; ++k) {
maxval = fmaxf(maxval, vec_at(v, k));
}
sumval *= expf(inv_temperature * (old_maxval - maxval));
for(int k = 0; k < 4; ++k) {
sumval += expf(inv_temperature * (vec_at(v, k) - maxval));
}
}
if(4*pos_by_4 + warp.thread_rank() <= own_pos) {
float old_maxval = maxval;
maxval = fmaxf(maxval, x[4*pos_by_4 + warp.thread_rank()]);
sumval *= expf(inv_temperature * (old_maxval - maxval));
sumval += expf(inv_temperature * (x[4*pos_by_4 + warp.thread_rank()] - maxval));
}
float global_maxval = cg::reduce(warp, maxval, cg::greater<float>{});
sumval *= expf(inv_temperature * (maxval - global_maxval));
float sum = cg::reduce(warp, sumval, cg::plus<float>{});
float norm = 1.f / sum;
for (int i = warp.thread_rank(); i <= own_pos; i += warp.size()) {
float ev = expf(inv_temperature * (__ldcs(x + i) - global_maxval));
__stcs(out + idx * T + i, ev * norm);
}
}
__global__ void residual_forward_kernel(float* out, float* inp1, float* inp2, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
out[idx] = __ldcs(&inp1[idx]) + __ldcs(&inp2[idx]);
}
}
#define GELU_SCALING_FACTOR sqrtf(2.0f / M_PI)
__global__ void gelu_forward_kernel(float* out, const float* inp, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {
float xi = inp[i];
float cube = 0.044715f * xi * xi * xi;
out[i] = 0.5f * xi * (1.0f + tanhf(GELU_SCALING_FACTOR * (xi + cube)));
}
}
__global__ void gelu_backward_kernel(float* dinp, const float* inp, const float* dout, const int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {
float x = inp[i];
float cube = 0.044715f * x * x * x;
float tanh_arg = GELU_SCALING_FACTOR * (x + cube);
float tanh_out = tanhf(tanh_arg);
float coshf_out = coshf(tanh_arg);
float sech_out = 1.0f / (coshf_out * coshf_out);
float local_grad = 0.5f * (1.0f + tanh_out) + x * 0.5f * sech_out * GELU_SCALING_FACTOR * (1.0f + 3.0f * 0.044715f * x * x);
dinp[i] = local_grad * dout[i];
}
}
__global__ void matmul_backward_bias_kernel4(float* dbias, const float* dout, int B, int T, int OC) {
extern __shared__ float smem[];
const int warp_id = threadIdx.x / warpSize;
const int lane_id = threadIdx.x % warpSize;
const int tl = blockIdx.x * warpSize;
const int vstep = blockDim.x / warpSize;
const float* dout_col = dout + tl + lane_id;
float dout_sum = 0.0f;
for (int row = warp_id; row < B * T; row += vstep) {
dout_sum += dout_col[row * OC];
}
smem[lane_id + warp_id * warpSize] = dout_sum;
__syncthreads();
dout_sum = 0.0f;
if (warp_id == 0) {
for (int j = 0; j < vstep; j++) {
dout_sum += smem[lane_id + j * warpSize];
}
dbias[tl + lane_id] += dout_sum;
}
}
__global__ void layernorm_backward_kernel2(float* dinp, float* dweight, float* dbias,
const float* dout, const float* inp, const float* weight, const float* mean, const float* rstd,
int B, int T, int C) {
extern __shared__ float shared[];
namespace cg = cooperative_groups;
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
int idx = blockIdx.x * warp.meta_group_size() + warp.meta_group_rank();
int N = B * T;
if(idx >= N) { return; } // thread guards
int b = idx / T;
int t = idx % T;
const float* dout_bt = dout + b * T * C + t * C;
const float* inp_bt = inp + b * T * C + t * C;
float* dinp_bt = dinp + b * T * C + t * C;
const float mean_bt = mean[b * T + t];
const float rstd_bt = rstd[b * T + t];
float* dbias_shared = shared;
float* dweight_shared = shared + C;
#pragma unroll
for(int i = threadIdx.x; i < C; i+= blockDim.x){
dbias_shared[i] = 0.0f;
dweight_shared[i] = 0.0f;
}
__syncthreads();
float dnorm_mean = 0.0f;
float dnorm_norm_mean = 0.0f;
for (int i = warp.thread_rank(); i < C; i += warp.size()) {
float norm_bti = (inp_bt[i] - mean_bt) * rstd_bt;
float dnorm_i = weight[i] * dout_bt[i];
dnorm_mean += dnorm_i;
dnorm_norm_mean += dnorm_i * norm_bti;
}
dnorm_mean = cg::reduce(warp, dnorm_mean, cg::plus<float>{});
dnorm_norm_mean = cg::reduce(warp, dnorm_norm_mean, cg::plus<float>{});
dnorm_mean = dnorm_mean / C;
dnorm_norm_mean = dnorm_norm_mean / C;
for (int i = warp.thread_rank(); i < C; i += warp.size()) {
float norm_bti = (inp_bt[i] - mean_bt) * rstd_bt;
float dnorm_i = weight[i] * dout_bt[i];
atomicAdd(&dbias_shared[i], dout_bt[i]);
atomicAdd(&dweight_shared[i], norm_bti * dout_bt[i]);
float dval = 0.0f;
dval += dnorm_i;
dval -= dnorm_mean;
dval -= norm_bti * dnorm_norm_mean;
dval *= rstd_bt;
dinp_bt[i] += dval;
}
__syncthreads();
for(int i = threadIdx.x; i < C; i+= blockDim.x){
atomicAdd(&dbias[i], dbias_shared[i]);
atomicAdd(&dweight[i], dweight_shared[i]);
}
}
__global__ void softmax_autoregressive_backward_kernel(float* dpreatt, const float* datt, const float* att,
int B, int T, int C, float scale) {
constexpr const int BlockSize = 256;
constexpr int T_per_block = 4;
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
__shared__ float block_acc[32];
int idx = blockIdx.y;
int t0 = T - 1 - T_per_block*blockIdx.x;
att += idx * T * T;
datt += idx * T * T;
dpreatt += idx * T * T;
if (warp.meta_group_rank() == 0) {
block_acc[warp.thread_rank()] = 0;
}
for(int to = 0; to < T_per_block; ++to) {
int t = t0 - to;
if(t < 0) return;
const float* att_bth = att + t * T;
const float* datt_bth = datt + t * T;
float* dpreatt_bth = dpreatt + t * T;
float local_sum = 0;
for (int t2 = block.thread_rank(); t2 <= t; t2 += BlockSize) {
local_sum += att_bth[t2] * datt_bth[t2];
}
block_acc[warp.meta_group_rank()] = cg::reduce(warp, local_sum, cg::plus<float>{});
block.sync();
local_sum = cg::reduce(warp, block_acc[warp.thread_rank()], cg::plus<float>{});
for (int t3 = block.thread_rank(); t3 <= t; t3 += BlockSize) {
float acc = __ldcs(att_bth + t3) * (__ldcs(datt_bth + t3) - local_sum);
__stcs(dpreatt_bth + t3, scale * acc);
}
}
}
__device__ inline float lerp(float start, float end, float weight) {
return fma(weight, end, fma(-weight, start, start));
}
__global__ void adamw_kernel2(float* params_memory, float* grads_memory, float* m_memory, float* v_memory, long num_parameters,
float learning_rate, float beta1, float beta2, float beta1_correction, float beta2_correction, float eps, float weight_decay) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i >= num_parameters) return;
float grad = grads_memory[i];
float m = m_memory[i];
float v = v_memory[i];
// update the first moment (momentum)
m = lerp(grad, m, beta1);
m_memory[i] = m;
// update the second moment (RMSprop)
v = lerp(grad * grad, v, beta2);
v_memory[i] = v;
m /= beta1_correction;
v /= beta2_correction;
params_memory[i] -= learning_rate * (m / (sqrtf(v) + eps) + weight_decay * params_memory[i]);
}
struct SoftmaxParams {
float Scale;
float Offset;
};
__device__ SoftmaxParams prepare_softmax_blockwide_nofloat4(cg::thread_block_tile<32>& warp,
int idx, const float* inp, int V, int P) {
const float* x = inp + idx * P;
float thread_maxval = -INFINITY;
float thread_sumval = 0.0f;
for (int i = V + threadIdx.x - blockDim.x; i >= 0; i -= blockDim.x) {
float v = x[i];
float old_maxval = thread_maxval;
thread_maxval = fmaxf(thread_maxval, v);
thread_sumval *= expf((old_maxval - thread_maxval));
thread_sumval += expf(v - thread_maxval);
}
__shared__ float shared_maxval[32];
__shared__ float shared_sumval[32];
int num_warps = blockDim.x / 32;
int warp_id = threadIdx.x / 32;
int lane_id = threadIdx.x % 32;
float warp_maxval = cg::reduce(warp, thread_maxval, cg::greater<float>{});
if (lane_id == 0) { shared_maxval[warp_id] = warp_maxval; }
__syncthreads();
warp_maxval = (lane_id < num_warps) ? shared_maxval[lane_id] : -FLT_MAX;
float block_maxval = cg::reduce(warp, warp_maxval, cg::greater<float>{});
thread_sumval *= expf(thread_maxval - block_maxval);
float warp_sumval = cg::reduce(warp, thread_sumval, cg::plus<float>{});
if (lane_id == 0) { shared_sumval[warp_id] = warp_sumval; }
__syncthreads();
warp_sumval = (lane_id < num_warps) ? shared_sumval[lane_id] : 0.0f;
float block_sumval = cg::reduce(warp, warp_sumval, cg::plus<float>{});
return SoftmaxParams{1.f / block_sumval, block_maxval};
}
__global__ void fused_classifier_kernel3(float* logits, float* losses, float* probs,
const float* dlosses, const int* targets,
int B, int T, int V, int P) {
namespace cg = cooperative_groups;
cg::thread_block block = cg::this_thread_block();
cg::thread_block_tile<32> warp = cg::tiled_partition<32>(block);
int idx = blockIdx.x;
int ix = targets[idx];
SoftmaxParams sp = prepare_softmax_blockwide_nofloat4(warp, idx, logits, V, P);
if(threadIdx.x == 0) {
float prob = expf(logits[idx * P + ix] - sp.Offset) * sp.Scale;
losses[idx] = -logf(prob);
}
float dloss = dlosses != NULL ? dlosses[idx] : 1.0f / (B*T);
const float* logits_vec = logits + idx * P;
for (int i = threadIdx.x; i < V; i += blockDim.x) {
// this is the 2nd read of logits after the one in prepare_softmax2
// this data will never be needed again, so we reduce cache persistence
float v = __ldcs(&logits_vec[i]);
float prob = expf(v - sp.Offset) * sp.Scale;
if (probs != NULL) {
probs[idx * P + i] = prob;
}
float indicator = (i == ix) ? 1.0f : 0.0f;
logits[idx * P + i] = (prob - indicator) * dloss;
}
}
void encoder_forward(float* out,
const int* inp, const float* wte, const float* wpe,
int B, int T, int C) {
assert(C % 4 == 0);
const int block_size = 512;
const int N = B * T * C;
const int grid_size = CEIL_DIV(N / 4, block_size);
encoder_forward_kernel3<<<grid_size, block_size>>>((float4*) out, inp, (float4*) wte, (float4*) wpe, B, T, C);
cudaCheck(cudaGetLastError());
}
void encoder_backward(float* dwte, float* dwpe,
const float* dout, const int* inp,
int B, int T, int C) {
const int N = B * T * C;
const int block_size = 256;
const int grid_size = CEIL_DIV(N, block_size);
encoder_backward_kernel<<<grid_size, block_size>>>(dwte, dwpe, dout, inp, B, T, C);
cudaCheck(cudaGetLastError());
}
void layernorm_forward(float* out, float* mean, float* rstd,
float* inp, float* weight, float* bias,
int B, int T, int C) {
const int block_size = 512;
const int N = B * T;
const int grid_size = CEIL_DIV(N * 32, block_size);
layernorm_forward_kernel3<<<grid_size, block_size>>>(out, mean, rstd, inp, weight, bias, N, C);
cudaCheck(cudaGetLastError());
}
void matmul_forward_cublaslt(float* out,
float* inp, float* weight, float* bias,
int B, int T, int C, int OC) {
int has_bias = (bias != NULL);
if(((uintptr_t)bias % 16) != 0) {
printf("Bias pointer is not aligned (cuBLASLt requirement)!\n");
exit(EXIT_FAILURE);
}
int returnedResults = 0;
cublasLtMatmulDesc_t operationDesc;
cublasLtMatmulPreference_t preference;
cublasLtMatrixLayout_t weightLayout;
cublasLtMatrixLayout_t inputLayout;
cublasLtMatrixLayout_t outputLayout;
cublasLtMatrixLayout_t biasLayout;
cublasLtMatmulHeuristicResult_t heuristic;
cublasOperation_t opNoTranspose = CUBLAS_OP_N;
cublasOperation_t opTranspose = CUBLAS_OP_T;
cublasLtEpilogue_t epilogueBias = CUBLASLT_EPILOGUE_BIAS;
cublasCheck(cublasLtMatmulDescCreate(&operationDesc, cublas_compute_type, CUDA_R_32F));
cublasCheck(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &opTranspose, sizeof(opTranspose)));
cublasCheck(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &opNoTranspose, sizeof(opNoTranspose)));
if(has_bias) {
cublasCheck(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epilogueBias,
sizeof(epilogueBias)));
}
cublasCheck(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias, sizeof(bias)));
cublasCheck(cublasLtMatrixLayoutCreate(&weightLayout, CUDA_R_32F, C, OC, C));
cublasCheck(cublasLtMatrixLayoutCreate(&inputLayout, CUDA_R_32F, C, B*T, C));
cublasCheck(cublasLtMatrixLayoutCreate(&outputLayout, CUDA_R_32F, OC, B*T, OC));
cublasCheck(cublasLtMatrixLayoutCreate(&biasLayout, CUDA_R_32F, OC, 1, OC));
cublasCheck(cublasLtMatmulPreferenceCreate(&preference));
cublasCheck(cublasLtMatmulPreferenceSetAttribute(preference,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&cublaslt_workspace_size, sizeof(cublaslt_workspace_size)));
cublasCheck(cublasLtMatmulAlgoGetHeuristic(cublaslt_handle, operationDesc,
weightLayout, inputLayout, outputLayout, outputLayout,
preference, 1, &heuristic, &returnedResults));
if (returnedResults == 0) {
printf("No cuBLASLt algorithm: B: %d, T: %d, C: %d, OC: %d, bias: %d\n", B, T, C, OC, has_bias);
exit(EXIT_FAILURE);
}
const float alpha = 1.0f, beta = 0.0f;
cublasCheck(cublasLtMatmul(cublaslt_handle, operationDesc,
&alpha, weight, weightLayout, inp, inputLayout, &beta,
out, outputLayout, out, outputLayout, &heuristic.algo,
cublaslt_workspace, cublaslt_workspace_size, 0));
cublasCheck(cublasLtMatmulPreferenceDestroy(preference));
cublasCheck(cublasLtMatmulDescDestroy(operationDesc));
cublasCheck(cublasLtMatrixLayoutDestroy(weightLayout));
cublasCheck(cublasLtMatrixLayoutDestroy(inputLayout));
cublasCheck(cublasLtMatrixLayoutDestroy(outputLayout));
cublasCheck(cublasLtMatrixLayoutDestroy(biasLayout));
}
void attention_forward(float* out, float* qkvr, float* att,
float* inp,
int B, int T, int C, int NH) {
const int block_size = 256;
const int softmax_block_size = 256;
int HS = C / NH; // head size
float *q, *k, *v;
q = qkvr + 0 * B * T * C;
k = qkvr + 1 * B * T * C;
v = qkvr + 2 * B * T * C;
int total_threads = B * NH * T * HS;
int num_blocks = CEIL_DIV(total_threads, block_size);
permute_kernel<<<num_blocks, block_size>>>(q, k, v, inp, B, T, NH, HS);
cudaCheck(cudaGetLastError());
const float alpha = 1.0f;
const float beta = 0.0f;
float* preatt = inp;
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, T, T, HS, &alpha, k, HS, T * HS, q, HS, T * HS, &beta, preatt, T, T * T, B * NH));
float scale = 1.0 / sqrtf(HS);
int grid_size = CEIL_DIV(B * NH * T * 32, softmax_block_size);
softmax_forward_kernel5<<<grid_size, softmax_block_size>>>(att, scale, preatt, B * NH, T);
cudaCheck(cudaGetLastError());
float* vaccum = inp;
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, HS, T, T, &alpha, v, HS, T * HS, att, T, T * T, &beta, vaccum, HS, T * HS, B * NH));
num_blocks = CEIL_DIV(B * T * C, block_size);
unpermute_kernel<<<num_blocks, block_size>>>(vaccum, out, B, T, NH, HS);
cudaCheck(cudaGetLastError());
}
void residual_forward(float* out, float* inp1, float* inp2, int N) {
const int block_size = 256;
const int grid_size = CEIL_DIV(N, block_size);
residual_forward_kernel<<<grid_size, block_size>>>(out, inp1, inp2, N);
cudaCheck(cudaGetLastError());
}
void gelu_forward(float* out, const float* inp, int N) {
const int block_size = 128;
const int grid_size = CEIL_DIV(N, block_size);
gelu_forward_kernel<<<grid_size, block_size>>>(out, inp, N);
cudaCheck(cudaGetLastError());
}
void gelu_backward(float* dinp, const float* inp, const float* dout, const int N) {
const int block_size = 128;
const int grid_size = CEIL_DIV(N, block_size);
gelu_backward_kernel<<<grid_size, block_size>>>(dinp, inp, dout, N);
cudaCheck(cudaGetLastError());
}
void matmul_backward(float* dinp, float* dweight, float* dbias,
float* dout, float* inp, float* weight,
int B, int T, int C, int OC) {
float one = 1.0f;
float zero = 0.0f;
cublasCheck(cublasSgemm(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, C, B*T, OC, &one, weight, C, dout, OC, &zero, dinp, C));
cublasCheck(cublasSgemm(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_T, C, OC, B*T, &one, inp, C, dout, OC, &one, dweight, C));
if (dbias != NULL) {
const int block_size = 1024;
const int grid_size = OC / 32;
matmul_backward_bias_kernel4<<<grid_size, block_size, block_size * sizeof(float)>>>(dbias, dout, B, T, OC);
cudaCheck(cudaGetLastError());
}
}
void layernorm_backward(float* dinp, float* dweight, float* dbias,
const float* dout, const float* inp, const float* weight, const float* mean, const float* rstd,
int B, int T, int C) {
const int block_size = 512;
const int N = B * T;
const int grid_size = CEIL_DIV(32*N, block_size);
size_t shared_mem_size = 2 * C * sizeof(float);
layernorm_backward_kernel2<<<grid_size, block_size, shared_mem_size>>>(dinp, dweight, dbias, dout, inp, weight, mean, rstd, B, T, C);
cudaCheck(cudaGetLastError());
}
void attention_backward(float* dinp, float* dqkvr, float* dpreatt, float* datt, float* scratch,
const float* dout,
const float* qkvr, const float* att,
int B, int T, int C, int NH) {
const int block_size = 256;
int HS = C / NH; // head size
const float one = 1.0f;
const float zero = 0.0f; // note beta = 1.0f so that we accumulate gradients (+=)
const float *q, *k, *v;
q = qkvr + 0 * B * T * C;
k = qkvr + 1 * B * T * C;
v = qkvr + 2 * B * T * C;
float *dq, *dk, *dv;
dq = dqkvr + 0 * B * T * C;
dk = dqkvr + 1 * B * T * C;
dv = dqkvr + 2 * B * T * C;
int num_blocks = CEIL_DIV(B * T * C, block_size);
unpermute_kernel_backward<<<num_blocks, block_size>>>(scratch, dout, B, T, NH, HS);
cudaCheck(cudaGetLastError());
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N, T, T, HS, &one, v, HS, T * HS, scratch, HS, T * HS, &zero, datt, T, T * T, B * NH));
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_T, HS, T, T, &one, scratch, HS, T * HS, att, T, T * T, &zero, dv, HS, T * HS, B * NH));
int hs = C / NH; // head size
float scale = 1.0f / sqrtf(hs);
softmax_autoregressive_backward_kernel<<<dim3(T / 4, B * NH), 256>>>(dpreatt, datt, att, B, T, C, scale);
cudaCheck(cudaGetLastError());
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_N, HS, T, T, &one, k, HS, T * HS, dpreatt, T, T * T, &zero, dq, HS, T * HS, B * NH));
cublasCheck(cublasSgemmStridedBatched(cublas_handle, CUBLAS_OP_N, CUBLAS_OP_T, HS, T, T, &one, q, HS, T * HS, dpreatt, T, T * T, &zero, dk, HS, T * HS, B * NH));
num_blocks = CEIL_DIV(B * NH * T * HS, block_size);
permute_kernel_backward<<<num_blocks, block_size>>>(dinp, dq, dk, dv, B, T, NH, HS);
cudaCheck(cudaGetLastError());
}
void fused_classifier3(float* logits, float* losses,
const float* dlosses, const int* targets,
int B, int T, int V, int P) {
const int block_size = 1024;
const int N = B * T;
const int grid_size = N;
fused_classifier_kernel3<<<grid_size, block_size>>>(logits, losses, NULL, dlosses, targets, B, T, V, P);
cudaCheck(cudaGetLastError());
}
typedef struct {
int max_seq_len;
int vocab_size;
int padded_vocab_size;
int num_layers;
int num_heads;
int channels;
} GPT2Config;
#define NUM_PARAMETER_TENSORS 16
typedef struct {
float* wte;
float* wpe;
float* ln1w;
float* ln1b;
float* qkvw;
float* qkvb;
float* attprojw;
float* attprojb;
float* ln2w;
float* ln2b;
float* fcw;
float* fcb;
float* fcprojw;
float* fcprojb;
float* lnfw;
float* lnfb;
} ParameterTensors;
void fill_in_parameter_sizes(size_t* param_sizes, GPT2Config config) {
int Vp = config.padded_vocab_size;
int C = config.channels;
int maxT = config.max_seq_len;
int L = config.num_layers;
param_sizes[0] = Vp * C;
param_sizes[1] = maxT * C;
param_sizes[2] = L * C;
param_sizes[3] = L * C;
param_sizes[4] = L * (3 * C) * C;
param_sizes[5] = L * (3 * C);
param_sizes[6] = L * C * C;
param_sizes[7] = L * C;
param_sizes[8] = L * C;
param_sizes[9] = L * C;
param_sizes[10] = L * (4 * C) * C;
param_sizes[11] = L * (4 * C);
param_sizes[12] = L * C * (4 * C);
param_sizes[13] = L * C;
param_sizes[14] = C;
param_sizes[15] = C;
}
float* malloc_and_point_parameters(ParameterTensors* params, size_t* param_sizes, int on_device) {
size_t num_parameters = 0;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
num_parameters += param_sizes[i];
}
float* params_memory;
if (on_device) {
cudaCheck(cudaMalloc((void**)¶ms_memory, num_parameters * sizeof(float)));
} else {
params_memory = (float*)mallocCheck(num_parameters * sizeof(float));
}
float** ptrs[] = {
¶ms->wte, ¶ms->wpe, ¶ms->ln1w, ¶ms->ln1b, ¶ms->qkvw, ¶ms->qkvb,
¶ms->attprojw, ¶ms->attprojb, ¶ms->ln2w, ¶ms->ln2b, ¶ms->fcw, ¶ms->fcb,
¶ms->fcprojw, ¶ms->fcprojb, ¶ms->lnfw, ¶ms->lnfb
};
float* params_memory_iterator = params_memory;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
*(ptrs[i]) = params_memory_iterator;
params_memory_iterator += param_sizes[i];
}
return params_memory;
}
#define NUM_ACTIVATION_TENSORS 21
typedef struct {
float* encoded;
float* ln1;
float* ln1_mean;
float* ln1_rstd;
float* atty;
float* att;
float* attproj;
float* residual2;
float* ln2;
float* ln2_mean;
float* ln2_rstd;
float* fch;
float* fch_gelu;
float* fcproj;
float* residual3;
float* lnf;
float* lnf_mean;
float* lnf_rstd;
float* losses;
float* qkvr;
float* output;
} ActivationTensors;
void fill_in_activation_sizes(size_t* act_sizes, int B, int T, GPT2Config config) {
size_t Vp = config.padded_vocab_size;
size_t L = config.num_layers;
size_t NH = config.num_heads;
size_t C = config.channels;
act_sizes[0] = B * T * C;
act_sizes[1] = L * B * T * C;
act_sizes[2] = L * B * T;
act_sizes[3] = L * B * T;
act_sizes[4] = L * B * T * C;
act_sizes[5] = L * B * NH * T * T;
act_sizes[6] = L * B * T * C;
act_sizes[7] = L * B * T * C;
act_sizes[8] = L * B * T * C;
act_sizes[9] = L * B * T;
act_sizes[10] = L * B * T;
act_sizes[11] = L * B * T * 4*C;
act_sizes[12] = L * B * T * 4*C;
act_sizes[13] = L * B * T * C;
act_sizes[14] = L * B * T * C;
act_sizes[15] = B * T * C;
act_sizes[16] = B * T;
act_sizes[17] = B * T;
act_sizes[18] = B * T;
act_sizes[19] = L * B * T * 3*C; // qkvr
act_sizes[20] = B * T * max(3*C, max(NH*T, Vp)); // output / scratch
}
#define NUM_BACKWARD_TENSORS 3
typedef struct {
float* bt4c;
float* preatt;
float* residual3;
} GradActTensors;
void fill_in_grad_act_sizes(size_t* act_sizes, int B, int T, GPT2Config config) {
size_t NH = config.num_heads;
size_t C = config.channels;
act_sizes[0] = B * T * 4 * C;
act_sizes[1] = B * NH * T * T;
act_sizes[2] = B * T * C;
}
float* malloc_and_point(float** targets[], const size_t* act_sizes, int n) {
size_t num_activations = 0;
for (size_t i = 0; i < n; i++) {
num_activations += act_sizes[i];
}
float* acts_memory;
cudaCheck(cudaMalloc((void**)&acts_memory, num_activations * sizeof(float)));
float* acts_memory_iterator = acts_memory;
for (size_t i = 0; i < n; i++) {
*(targets[i]) = acts_memory_iterator;
acts_memory_iterator += act_sizes[i];
}
return acts_memory;
}
float* malloc_and_point_activations(ActivationTensors* acts, const size_t* act_sizes) {
float** ptrs[] = {
&acts->encoded, &acts->ln1, &acts->ln1_mean, &acts->ln1_rstd, &acts->atty,
&acts->att, &acts->attproj, &acts->residual2, &acts->ln2, &acts->ln2_mean,
&acts->ln2_rstd, &acts->fch, &acts->fch_gelu, &acts->fcproj, &acts->residual3, &acts->lnf,
&acts->lnf_mean, &acts->lnf_rstd, &acts->losses, &acts->qkvr, &acts->output
};
return malloc_and_point(ptrs, act_sizes, NUM_ACTIVATION_TENSORS);
}
float* malloc_and_point_backward(GradActTensors* acts, const size_t* act_sizes) {
float** ptrs[] = {
&acts->bt4c, &acts->preatt, &acts->residual3
};
return malloc_and_point(ptrs, act_sizes, NUM_BACKWARD_TENSORS);
}
typedef struct {
GPT2Config config;
ParameterTensors params;
size_t param_sizes[NUM_PARAMETER_TENSORS];
float* params_memory;
size_t num_parameters;
ParameterTensors grads;
float* grads_memory;
float* m_memory;
float* v_memory;
ActivationTensors acts;
size_t act_sizes[NUM_ACTIVATION_TENSORS];
float* acts_memory;
size_t num_activations;
GradActTensors grads_acts;
size_t num_grad_acts;
float* grads_acts_memory;
int batch_size;
int seq_len;
int* inputs;
int* targets;
float mean_loss;
float* cpu_losses;
} GPT2;
void gpt2_build_from_checkpoint(GPT2 *model, const char* checkpoint_path) {
FILE *model_file = fopenCheck(checkpoint_path, "rb");
int model_header[256];
freadCheck(model_header, sizeof(int), 256, model_file);
if (model_header[0] != 20240326) { fprintf(stderr, "Bad magic model file\n"); exit(EXIT_FAILURE); }
if (model_header[1] != 3) {
// was bumped from 1 -> 3 to incorporate the padded vocab size
fprintf(stderr, "Bad version in model file\n");
fprintf(stderr, "---> HINT: try to re-run `python train_gpt2.py`\n");
exit(EXIT_FAILURE);
}
model->config.max_seq_len = model_header[2];
model->config.vocab_size = model_header[3];
model->config.num_layers = model_header[4];
model->config.num_heads = model_header[5];
model->config.channels = model_header[6];
model->config.padded_vocab_size = model_header[7];
fill_in_parameter_sizes(model->param_sizes, model->config);
size_t num_parameters = 0;
for (size_t i = 0; i < NUM_PARAMETER_TENSORS; i++) {
num_parameters += model->param_sizes[i];
}
model->num_parameters = num_parameters;
model->params_memory = malloc_and_point_parameters(&model->params, model->param_sizes, 1);
float* params_memory_cpu = (float*)mallocCheck(num_parameters * sizeof(float));
freadCheck(params_memory_cpu, sizeof(float), num_parameters, model_file);
cudaCheck(cudaMemcpy(model->params_memory, params_memory_cpu, num_parameters * sizeof(float), cudaMemcpyHostToDevice));
free(params_memory_cpu);
fcloseCheck(model_file);
model->acts_memory = NULL;
model->grads_memory = NULL;
model->m_memory = NULL;
model->v_memory = NULL;
model->grads_acts_memory = NULL;
model->inputs = NULL;
model->targets = NULL;
model->cpu_losses = NULL;
model->batch_size = 0;
model->seq_len = 0;
model->mean_loss = -1.0f; // -1.0f will designate no loss
}
void gpt2_forward(GPT2 *model, int* inputs, int* targets, int B, int T) {
if (model->params_memory == NULL) {
printf("Error: model was not initialized properly.\n");
exit(EXIT_FAILURE);
}
int V = model->config.vocab_size;
int Vp = model->config.padded_vocab_size;
int L = model->config.num_layers;
int NH = model->config.num_heads;
int C = model->config.channels;
for(int i = 0; i < B * T; i++) {
assert(0 <= inputs[i] && inputs[i] < V);
if (targets != NULL) {
assert(0 <= targets[i] && targets[i] < V);
}
}
if(model->acts_memory == NULL) {
model->batch_size = B;
model->seq_len = T;
fill_in_activation_sizes(model->act_sizes, B, T, model->config);
size_t num_activations = 0;
for (size_t i = 0; i < NUM_ACTIVATION_TENSORS; i++) {
num_activations += model->act_sizes[i];
}
model->num_activations = num_activations;
model->acts_memory = malloc_and_point_activations(&model->acts, model->act_sizes);
printf("allocated %zu MiB for activations\n", (num_activations * sizeof(float)) >> 20);
cudaCheck(cudaMalloc((void**)&model->inputs, B * T * sizeof(int)));
cudaCheck(cudaMalloc((void**)&model->targets, B * T * sizeof(int)));
cudaCheck(cudaMallocHost((void**)&model->cpu_losses, B * T * sizeof(float)));
} else {
if (B != model->batch_size || T != model->seq_len) {
printf("Model: B=%d T=%d, Desired: B=%d T=%d\n", model->batch_size, model->seq_len, B, T);
exit(EXIT_FAILURE);
}
}
cudaCheck(cudaMemcpy(model->inputs, inputs, B * T * sizeof(int), cudaMemcpyHostToDevice));
if (targets != NULL) {
cudaCheck(cudaMemcpy(model->targets, targets, B * T * sizeof(int), cudaMemcpyHostToDevice));
}
ParameterTensors params = model->params;
ActivationTensors acts = model->acts;
float* residual;
encoder_forward(acts.encoded, model->inputs, params.wte, params.wpe, B, T, C);
for (int l = 0; l < L; l++) {
residual = l == 0 ? acts.encoded : acts.residual3 + (l-1) * B * T * C;
float* l_ln1w = params.ln1w + l * C;
float* l_ln1b = params.ln1b + l * C;
float* l_qkvw = params.qkvw + l * 3*C * C;
float* l_qkvb = params.qkvb + l * 3*C;
float* l_attprojw = params.attprojw + l * C * C;
float* l_attprojb = params.attprojb + l * C;
float* l_ln2w = params.ln2w + l * C;
float* l_ln2b = params.ln2b + l * C;
float* l_fcw = params.fcw + l * 4*C * C;
float* l_fcb = params.fcb + l * 4*C;
float* l_fcprojw = params.fcprojw + l * C * 4*C;
float* l_fcprojb = params.fcprojb + l * C;
float* l_ln1 = acts.ln1 + l * B * T * C;
float* l_ln1_mean = acts.ln1_mean + l * B * T;
float* l_ln1_rstd = acts.ln1_rstd + l * B * T;
float* l_qkvr = acts.qkvr + l * B * T * 3*C;
float* l_atty = acts.atty + l * B * T * C;
float* l_att = acts.att + l * B * NH * T * T;
float* l_attproj = acts.attproj + l * B * T * C;
float* l_residual2 = acts.residual2 + l * B * T * C;
float* l_ln2 = acts.ln2 + l * B * T * C;
float* l_ln2_mean = acts.ln2_mean + l * B * T;
float* l_ln2_rstd = acts.ln2_rstd + l * B * T;
float* l_fch = acts.fch + l * B * T * 4*C;
float* l_fch_gelu = acts.fch_gelu + l * B * T * 4*C;
float* l_fcproj = acts.fcproj + l * B * T * C;
float* l_residual3 = acts.residual3 + l * B * T * C;
float* scratch = acts.output;
layernorm_forward(l_ln1, l_ln1_mean, l_ln1_rstd, residual, l_ln1w, l_ln1b, B, T, C);
matmul_forward_cublaslt(scratch, l_ln1, l_qkvw, l_qkvb, B, T, C, 3*C);
attention_forward(l_atty, l_qkvr, l_att, scratch, B, T, C, NH);
matmul_forward_cublaslt(l_attproj, l_atty, l_attprojw, l_attprojb, B, T, C, C);
residual_forward(l_residual2, residual, l_attproj, B*T*C);
layernorm_forward(l_ln2, l_ln2_mean, l_ln2_rstd, l_residual2, l_ln2w, l_ln2b, B, T, C);
matmul_forward_cublaslt(l_fch, l_ln2, l_fcw, l_fcb, B, T, C, 4*C);
gelu_forward(l_fch_gelu, l_fch, B*T*4*C);
matmul_forward_cublaslt(l_fcproj, l_fch_gelu, l_fcprojw, l_fcprojb, B, T, 4*C, C);
residual_forward(l_residual3, l_residual2, l_fcproj, B*T*C);
}
residual = acts.residual3 + (L-1) * B * T * C; // last residual is in residual3
layernorm_forward(acts.lnf, acts.lnf_mean, acts.lnf_rstd, residual, params.lnfw, params.lnfb, B, T, C);
matmul_forward_cublaslt(acts.output, acts.lnf, params.wte, NULL, B, T, C, Vp);
if (targets != NULL) {
fused_classifier3(acts.output, acts.losses, NULL, model->targets, B, T, V, Vp);
cudaCheck(cudaMemcpy(model->cpu_losses, acts.losses, B * T * sizeof(float), cudaMemcpyDeviceToHost));
float mean_loss = 0.0f;
for (int i=0; i<B*T; i++) { mean_loss += model->cpu_losses[i]; }
mean_loss /= B*T;
model->mean_loss = mean_loss;
} else {
model->mean_loss = -1.0f;
}
}
void gpt2_zero_grad(GPT2 *model) {
if (model->grads_acts_memory != NULL) { cudaCheck(cudaMemset(model->grads_acts_memory, 0, model->num_grad_acts * sizeof(float))); }
if (model->grads_memory != NULL) { cudaCheck(cudaMemset(model->grads_memory, 0, model->num_parameters * sizeof(float))); }
}
void gpt2_backward(GPT2 *model) {
if (model->mean_loss == -1.0f) {
printf("Error: must forward with targets before backward\n");
exit(EXIT_FAILURE);
}
if (model->grads_memory == NULL) {
model->grads_memory = malloc_and_point_parameters(&model->grads, model->param_sizes, 1);
printf("allocated %zu MiB for parameter gradients\n", (model->num_parameters * sizeof(float)) >> 20);
size_t bw_act_sizes[NUM_ACTIVATION_TENSORS];
GPT2Config cfg = model->config;
cfg.num_layers = 1; // copy the configuration but override number of layers to 1
fill_in_grad_act_sizes(bw_act_sizes, model->batch_size, model->seq_len, cfg);
model->grads_acts_memory = malloc_and_point_backward(&model->grads_acts, bw_act_sizes);
model->num_grad_acts = 0;
for (int i = 0; i < NUM_BACKWARD_TENSORS; i++) {
model->num_grad_acts += bw_act_sizes[i];
}
printf("allocated %zu MiB for activation gradients\n", (model->num_grad_acts * sizeof(float)) >> 20);
gpt2_zero_grad(model);
}
int B = model->batch_size;
int T = model->seq_len;
int Vp = model->config.padded_vocab_size;
int L = model->config.num_layers;
int NH = model->config.num_heads;
int C = model->config.channels;
ParameterTensors params = model->params;
ParameterTensors grads = model->grads;
ActivationTensors acts = model->acts;
GradActTensors grads_acts = model->grads_acts;
matmul_backward(grads_acts.bt4c, grads.wte, NULL, acts.output, acts.lnf, params.wte, B, T, C, Vp);
float* residual = acts.residual3 + (L-1) * B * T * C;
float* dresidual = grads_acts.residual3;
layernorm_backward(dresidual, grads.lnfw, grads.lnfb, grads_acts.bt4c, residual, params.lnfw, acts.lnf_mean, acts.lnf_rstd, B, T, C);
for (int l = L-1; l >= 0; l--) {
residual = l == 0 ? acts.encoded : acts.residual3 + (l-1) * B * T * C;
float* l_ln1w = params.ln1w + l * C;
float* l_qkvw = params.qkvw + l * 3*C * C;
float* l_attprojw = params.attprojw + l * C * C;
float* l_ln2w = params.ln2w + l * C;
float* l_fcw = params.fcw + l * 4*C * C;
float* l_fcprojw = params.fcprojw + l * C * 4*C;
float* dl_ln1w = grads.ln1w + l * C;
float* dl_ln1b = grads.ln1b + l * C;
float* dl_qkvw = grads.qkvw + l * 3*C * C;
float* dl_qkvb = grads.qkvb + l * 3*C;
float* dl_attprojw = grads.attprojw + l * C * C;
float* dl_attprojb = grads.attprojb + l * C;
float* dl_ln2w = grads.ln2w + l * C;
float* dl_ln2b = grads.ln2b + l * C;
float* dl_fcw = grads.fcw + l * 4*C * C;
float* dl_fcb = grads.fcb + l * 4*C;
float* dl_fcprojw = grads.fcprojw + l * C * 4*C;
float* dl_fcprojb = grads.fcprojb + l * C;
float* l_ln1 = acts.ln1 + l * B * T * C;
float* l_ln1_mean = acts.ln1_mean + l * B * T;
float* l_ln1_rstd = acts.ln1_rstd + l * B * T;
float* l_qkvr = acts.qkvr + l * B * T * 3*C;
float* l_atty = acts.atty + l * B * T * C;
float* l_att = acts.att + l * B * NH * T * T;
float* l_residual2 = acts.residual2 + l * B * T * C;
float* l_ln2 = acts.ln2 + l * B * T * C;
float* l_ln2_mean = acts.ln2_mean + l * B * T;
float* l_ln2_rstd = acts.ln2_rstd + l * B * T;
float* l_fch = acts.fch + l * B * T * 4*C;
float* l_fch_gelu = acts.fch_gelu + l * B * T * 4*C;
float* dl_btc = acts.lnf;
float* dl_bt4c = grads_acts.bt4c;
float* dl_preatt = grads_acts.preatt;
float* scratch = acts.output;
matmul_backward(dl_bt4c, dl_fcprojw, dl_fcprojb, dresidual, l_fch_gelu, l_fcprojw, B, T, 4*C, C);
gelu_backward(dl_bt4c, l_fch, dl_bt4c, B*T*4*C);
matmul_backward(dl_btc, dl_fcw, dl_fcb, dl_bt4c, l_ln2, l_fcw, B, T, C, 4 * C);
layernorm_backward(dresidual, dl_ln2w, dl_ln2b, dl_btc, l_residual2, l_ln2w, l_ln2_mean, l_ln2_rstd, B, T, C);
matmul_backward(dl_btc, dl_attprojw, dl_attprojb, dresidual, l_atty, l_attprojw, B, T, C, C);
float* buffer_a = l_atty;
float* buffer_b = l_fch;
attention_backward(dl_bt4c, buffer_b, dl_preatt, scratch, buffer_a, dl_btc, l_qkvr, l_att, B, T, C, NH);
matmul_backward(dl_btc, dl_qkvw, dl_qkvb, dl_bt4c, l_ln1, l_qkvw, B, T, C, 3 * C);
layernorm_backward(dresidual, dl_ln1w, dl_ln1b, dl_btc, residual, l_ln1w, l_ln1_mean, l_ln1_rstd, B, T, C);
}
encoder_backward(grads.wte, grads.wpe, dresidual, model->inputs, B, T, C);
}
void gpt2_update(GPT2 *model, float learning_rate, float beta1, float beta2, float eps, float weight_decay, int t) {
if (model->m_memory == NULL) {
cudaCheck(cudaMalloc((void**)&model->m_memory, model->num_parameters * sizeof(float)));
cudaCheck(cudaMalloc((void**)&model->v_memory, model->num_parameters * sizeof(float)));
cudaCheck(cudaMemset(model->m_memory, 0, model->num_parameters * sizeof(float)));
cudaCheck(cudaMemset(model->v_memory, 0, model->num_parameters * sizeof(float)));
printf("allocated %zu MiB for AdamW optimizer state m\n", (model->num_parameters * sizeof(float)) >> 20);
printf("allocated %zu MiB for AdamW optimizer state v\n", (model->num_parameters * sizeof(float)) >> 20);
}
int block_size = 512;
int num_blocks = CEIL_DIV(model->num_parameters, block_size);
float beta1_correction = 1.0f - powf(beta1, t);
float beta2_correction = 1.0f - powf(beta2, t);
adamw_kernel2<<<num_blocks, block_size>>>(model->params_memory, model->grads_memory, model->m_memory, model->v_memory,
model->num_parameters,
learning_rate, beta1, beta2, beta1_correction, beta2_correction, eps, weight_decay);
cudaCheck(cudaGetLastError());
}
void gpt2_free(GPT2 *model) {
cudaCheck(cudaFree(model->params_memory));
cudaCheck(cudaFree(model->grads_memory));
cudaCheck(cudaFree(model->m_memory));
cudaCheck(cudaFree(model->v_memory));
cudaCheck(cudaFree(model->acts_memory));
cudaCheck(cudaFree(model->grads_acts_memory));
cudaCheck(cudaFree(model->inputs));
cudaCheck(cudaFree(model->targets));
cudaFreeHost(model->cpu_losses);
}
#ifndef TESTING
typedef struct {
int B;
int T;
FILE* tokens_file;
long file_size;
long current_position;
// output memory
int* batch;
int* inputs;
int* targets;
long num_batches;
} DataLoader;
void dataloader_init(DataLoader *loader, const char* filename, int B, int T) {
loader->B = B;
loader->T = T;
loader->tokens_file = fopenCheck(filename, "rb");
fseekCheck(loader->tokens_file, 0, SEEK_END);
loader->file_size = ftell(loader->tokens_file);
fseekCheck(loader->tokens_file, 0, SEEK_SET);
if (loader->file_size < (B * T + 1) * sizeof(int)) {
printf("Error: file size is too small for the batch size and sequence length\n");
exit(EXIT_FAILURE);
}
loader->current_position = 0;
cudaMallocHost((void**)&loader->batch, (B * T + 1) * sizeof(int));
loader->inputs = loader->batch;
loader->targets = loader->batch + 1;
loader->num_batches = loader->file_size / (B * T * sizeof(int));
}
void dataloader_reset(DataLoader *loader) {
loader->current_position = 0;
}
void dataloader_next_batch(DataLoader *loader) {
int B = loader->B;
int T = loader->T;
if (loader->current_position + (B*T+1) * sizeof(int) > loader->file_size) {
loader->current_position = 0;
}
fseekCheck(loader->tokens_file, loader->current_position, SEEK_SET);
freadCheck(loader->batch, sizeof(int), B*T+1, loader->tokens_file);
loader->current_position += B*T * sizeof(int);
}
void dataloader_free(DataLoader *loader) {
fcloseCheck(loader->tokens_file);
cudaFreeHost(loader->batch);
}
#define GPT2_EOT 50256
unsigned int random_u32(unsigned long long *state) {
*state ^= *state >> 12;
*state ^= *state << 25;
*state ^= *state >> 27;
return (*state * 0x2545F4914F6CDD1Dull) >> 32;
}
float random_f32(unsigned long long *state) {
return (random_u32(state) >> 8) / 16777216.0f;
}
int sample_softmax(const float* logits, int n, float coin) {
double norm = 0;
for (int i = 0; i < n; i++) {
norm += expf(logits[i]);
}
coin *= norm;
float cdf = 0.0f;
for (int i = 0; i < n; i++) {
cdf += expf(logits[i]);
if (coin < cdf) {
return i;
}
}
return n - 1;
}
typedef struct {
FILE *logfile;
int flush_every; // every how many steps to flush the log
} Logger;
void logger_init(Logger *logger, const char *filename) {
logger->flush_every = 20;
logger->logfile = NULL;
if (filename != NULL) { logger->logfile = fopenCheck(filename, "w"); }
}
void logger_log_val(Logger *logger, int step, float val_loss) {
if (logger->logfile != NULL) {
fprintf(logger->logfile, "s:%d tel:%.4f\n", step, val_loss);
}
}
void logger_log_train(Logger *logger, int step, float train_loss) {
if (logger->logfile != NULL) {
fprintf(logger->logfile, "s:%d trl:%.4f\n", step, train_loss);
if (step % 10 == 0) { fflush(logger->logfile); }
}
}
void logger_free(Logger *logger) {
if (logger->logfile != NULL) { fclose(logger->logfile); }
}
void error_usage() {
fprintf(stderr, "Usage: ./train_gpt2fp32cu [options]\n");
fprintf(stderr, "Example: ./train_gpt2fp32cu -i data/TinyStories -v 100 -s 100 -g 144 -o stories.log\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -i <string> input dataset prefix (default = data/tiny_shakespeare)\n");
fprintf(stderr, " -o <string> output log file (default = NULL)\n");
fprintf(stderr, " -b <int> batch size B (default = 4)\n");
fprintf(stderr, " -t <int> sequence length T (default = 1024)\n");
fprintf(stderr, " -l <float> learning rate (default = 3e-4f)\n");
fprintf(stderr, " -v <int> val_loss_every, how often we evaluate val loss (default = 20)\n");
fprintf(stderr, " -m <int> val_max_batches, up to how many val batches to estimate val loss? (default = 20)\n");
fprintf(stderr, " -s <int> sample_every, how often we inference the model (default = 20)\n");
fprintf(stderr, " -g <int> genT, how many steps of inference we do (default = 64)\n");
exit(EXIT_FAILURE);
}
int main(int argc, char *argv[]) {
const char* input_dataset_prefix = "data/tiny_shakespeare";
const char* output_log_file = NULL;
int B = 4;
int T = 1024;
float learning_rate = 3e-4f;
int val_loss_every = 20;
int val_max_batches = 20;
int sample_every = 20;
int genT = 64;
for (int i = 1; i < argc; i+=2) {
if (i + 1 >= argc) { error_usage(); } // must have arg after flag
if (argv[i][0] != '-') { error_usage(); } // must start with dash
if (strlen(argv[i]) != 2) { error_usage(); } // must be -x (one dash, one letter)
// read in the args
if (argv[i][1] == 'i') { input_dataset_prefix = argv[i+1]; }
else if (argv[i][1] == 'o') { output_log_file = argv[i+1]; }
else if (argv[i][1] == 'b') { B = atoi(argv[i+1]); }
else if (argv[i][1] == 't') { T = atoi(argv[i+1]); }
else if (argv[i][1] == 'l') { learning_rate = atof(argv[i+1]); }
else if (argv[i][1] == 'v') { val_loss_every = atoi(argv[i+1]); }
else if (argv[i][1] == 'm') { val_max_batches = atoi(argv[i+1]); }
else if (argv[i][1] == 's') { sample_every = atoi(argv[i+1]); }
else if (argv[i][1] == 'g') { genT = atoi(argv[i+1]); }
else { error_usage(); }
}
printf("+-----------------------+----------------------------------------------------+\n");
printf("| Parameter | Value |\n");
printf("+-----------------------+----------------------------------------------------+\n");
printf("| input dataset prefix | %-50s |\n", input_dataset_prefix);
printf("| output log file | %-50s |\n", output_log_file == NULL ? "NULL" : output_log_file);
printf("| batch size B | %-50d |\n", B);
printf("| sequence length T | %-50d |\n", T);
printf("| learning rate | %-50f |\n", learning_rate);
printf("| val_loss_every | %-50d |\n", val_loss_every);
printf("| val_max_batches | %-50d |\n", val_max_batches);
printf("| sample_every | %-50d |\n", sample_every);
printf("| genT | %-50d |\n", genT);
printf("+-----------------------+----------------------------------------------------+\n");
int deviceIdx = 0;
cudaCheck(cudaSetDevice(deviceIdx));
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, deviceIdx);
cublasCheck(cublasCreate(&cublas_handle));
cublasCheck(cublasLtCreate(&cublaslt_handle));
int enable_tf32 = deviceProp.major >= 8 ? 1 : 0;
cublas_compute_type = enable_tf32 ? CUBLAS_COMPUTE_32F_FAST_TF32 : CUBLAS_COMPUTE_32F;
cublasMath_t cublas_math_mode = enable_tf32 ? CUBLAS_TF32_TENSOR_OP_MATH : CUBLAS_DEFAULT_MATH;
cublasCheck(cublasSetMathMode(cublas_handle, cublas_math_mode));
cudaCheck(cudaMalloc(&cublaslt_workspace, cublaslt_workspace_size));
printf("| device | %-50s |\n", deviceProp.name);
printf("| TF32 | %-50s |\n", enable_tf32 ? "enabled" : "disabled");
printf("+-----------------------+----------------------------------------------------+\n");
GPT2 model;
gpt2_build_from_checkpoint(&model, "gpt2_124M.bin");
printf("| max_sequence_length T | %-50d |\n", model.config.max_seq_len);
printf("| vocab_size V | %-50d |\n", model.config.vocab_size);
printf("| padded_vocab_size Vp | %-50d |\n", model.config.padded_vocab_size);
printf("| num_layers L | %-50d |\n", model.config.num_layers);
printf("| num_heads NH | %-50d |\n", model.config.num_heads);
printf("| channels C | %-50d |\n", model.config.channels);
printf("| num_parameters | %-50zu |\n", model.num_parameters);
printf("+-----------------------+----------------------------------------------------+\n");
char train_tokens_filename[128];
char val_tokens_filename[128];
assert(strlen(input_dataset_prefix) < 100); // being bit lazy here, make sure we don't overflow
sprintf(train_tokens_filename, "%s_train.bin", input_dataset_prefix);
sprintf(val_tokens_filename, "%s_val.bin", input_dataset_prefix);
DataLoader train_loader;
dataloader_init(&train_loader, train_tokens_filename, B, T);
DataLoader val_loader;
dataloader_init(&val_loader, val_tokens_filename, B, T);
int train_num_batches = train_loader.num_batches; // let's do 1 epoch by default for now
int val_num_batches = train_loader.num_batches < val_max_batches ? train_loader.num_batches : val_max_batches;
printf("| train_num_batches | %-50d |\n", train_num_batches);
printf("| val_num_batches | %-50d |\n", val_num_batches);
printf("+-----------------------+----------------------------------------------------+\n");
printf("allocated %d MiB for model parameters\n", (int)round(model.num_parameters * sizeof(float) / (1024 * 1024)));
Logger logger;
logger_init(&logger, output_log_file);
Tokenizer tokenizer;
tokenizer_init(&tokenizer, "gpt2_tokenizer.bin");
unsigned long long rng_state = 1337;
int* gen_tokens = (int*)mallocCheck(B * T * sizeof(int));
float* cpu_logits = (float*)mallocCheck(model.config.vocab_size * sizeof(float));
struct timespec start, end;
double total_sum_iteration_time_s = 0.0;
for (int step = 0; step <= train_num_batches; step++) {
int last_step = step == train_num_batches;
if (step % val_loss_every == 0 || last_step) {
float val_loss = 0.0f;
dataloader_reset(&val_loader);
for (int i = 0; i < val_num_batches; i++) {
dataloader_next_batch(&val_loader);
gpt2_forward(&model, val_loader.inputs, val_loader.targets, B, T);
val_loss += model.mean_loss;
}
val_loss /= val_num_batches;
printf("val loss %f\n", val_loss);
logger_log_val(&logger, step, val_loss);
}
if (step > 0 && step % sample_every == 0 || last_step) {
for(int i = 0; i < B * T; ++i) {
gen_tokens[i] = GPT2_EOT;
}
printf("generating:\n---\n");
for (int t = 1; t < genT; t++) {
gpt2_forward(&model, gen_tokens, NULL, B, T);
float* logits = model.acts.output + (t - 1) * model.config.padded_vocab_size;
cudaCheck(cudaMemcpy(cpu_logits, logits, model.config.vocab_size * sizeof(float), cudaMemcpyDeviceToHost));
float coin = random_f32(&rng_state);
int next_token = sample_softmax(cpu_logits, model.config.vocab_size, coin);
gen_tokens[t] = next_token;
if (tokenizer.init_ok) {
const char* token_str = tokenizer_decode(&tokenizer, next_token);
safe_printf(token_str);
} else {
printf("%d ", next_token);
}
fflush(stdout);
}
printf("\n---\n");
}
if (last_step) { break; }
clock_gettime(CLOCK_MONOTONIC, &start);
dataloader_next_batch(&train_loader);
gpt2_forward(&model, train_loader.inputs, train_loader.targets, B, T);
gpt2_zero_grad(&model);
gpt2_backward(&model);
gpt2_update(&model, learning_rate, 0.9f, 0.999f, 1e-8f, 0.0f, step+1);
cudaCheck(cudaDeviceSynchronize());
clock_gettime(CLOCK_MONOTONIC, &end);
double time_elapsed_s = (end.tv_sec - start.tv_sec) + (end.tv_nsec - start.tv_nsec) / 1e9;
total_sum_iteration_time_s += time_elapsed_s;
int tokens_per_second = (B * T) / time_elapsed_s;
printf("step %4d/%d: train loss %f (%f ms, %d tok/s)\n", step + 1, train_num_batches, model.mean_loss, time_elapsed_s * 1000, tokens_per_second);
logger_log_train(&logger, step, model.mean_loss);
}
printf("total average iteration time: %f ms\n", total_sum_iteration_time_s / train_num_batches * 1000);
dataloader_free(&train_loader);
dataloader_free(&val_loader);
tokenizer_free(&tokenizer);
gpt2_free(&model);
free(cpu_logits);
free(gen_tokens);
cudaCheck(cudaFree(cublaslt_workspace));
cublasCheck(cublasDestroy(cublas_handle));
cublasCheck(cublasLtDestroy(cublaslt_handle));
logger_free(&logger);
return 0;
}
#endif
解读
这段代码是一个使用C语言编写的训练GPT-2模型的程序,它利用了NVIDIA的CUDA平台进行GPU加速。GPT-2是一个基于Transformer架构的自然语言处理模型,常用于文本生成任务。这个程序包含了数据加载、模型构建、前向传播、反向传播、参数更新以及模型保存等功能。下面是对程序主要部分的分析:
-
头文件包含:程序开始处包含了多个头文件,这些头文件提供了访问标准库、数学库、时间库、断言、浮点数精度、字符串操作以及UNIX系统调用的功能。
-
CUDA和cuBLAS库:程序使用了CUDA运行时API和cuBLAS库,这是NVIDIA提供的一些用于GPU加速计算的库。
-
自定义宏定义:例如
CEIL_DIV
用于计算除法的上限,cudaCheck
和cublasCheck
用于检查CUDA和cuBLAS操作的错误。 -
设备函数和内核:程序中定义了一些设备函数(在GPU上执行的函数)和内核(可以在GPU上并行执行的函数),例如
encoder_forward_kernel3
和encoder_backward_kernel
等,这些内核函数实现了模型的前向传播和反向传播计算。 -
前向传播和反向传播函数:程序实现了
encoder_forward
、encoder_backward
、layernorm_forward
、matmul_forward_cublaslt
等函数,这些函数用于执行模型的前向传播。matmul_backward
、layernorm_backward
等函数用于执行模型的反向传播。 -
注意力机制:程序实现了注意力机制的前向和后向传播,这是Transformer模型的核心部分。
-
优化器:程序实现了AdamW优化器的
adamw_kernel2
内核函数,用于更新模型的参数。 -
模型构建:
gpt2_build_from_checkpoint
函数用于从检查点文件中恢复模型的参数。 -
模型前向传播:
gpt2_forward
函数执行模型的前向传播,并计算损失。 -
模型反向传播和参数更新:
gpt2_backward
函数执行模型的反向传播,计算梯度;gpt2_update
函数使用AdamW优化器更新模型参数。 -
数据加载器:
DataLoader
结构和相关函数用于从文件中加载训练和验证数据。 -
日志记录:
Logger
结构和相关函数用于记录训练过程中的损失和其他信息。 -
主函数:
main
函数是程序的入口点,它初始化模型、数据加载器、日志记录器,然后进入训练循环。在循环中,它执行数据加载、模型前向传播、损失计算、反向传播、参数更新,并定期记录验证损失和生成文本样本。 -
错误处理和参数解析:程序提供了错误处理和命令行参数解析,以便于用户自定义训练参数。
-
随机数生成:程序实现了随机数生成器,用于文本生成过程中的随机抽样。
-
Tokenizer:程序使用了Tokenizer来处理文本数据,将文本转换为模型可以理解的数字ID。
整体来看,这个程序是一个完整的训练循环实现,包括数据加载、模型构建、训练、验证和文本生成。它展示了如何使用CUDA和cuBLAS库在GPU上执行复杂的机器学习模型训练。
这个C语言程序是一个用于训练GPT-2模型的完整示例,它使用了NVIDIA CUDA和cuBLAS库来实现GPU加速。程序的主要目的是展示如何在GPU上使用这些技术来训练一个基于Transformer架构的语言模型。以下是对程序主要部分的解读:
-
头文件和库:程序包含了多个C标准库头文件,以及CUDA运行时API、cuBLAS库和合作组(cooperative groups)库,后者用于在CUDA内核中实现更高效的并行计算。
-
宏定义:
CEIL_DIV
宏用于计算除法的上限。cudaCheck
和cublasCheck
宏用于检查CUDA和cuBLAS操作的错误,并在出错时退出程序。 -
CUDA和cuBLAS环境设置:程序初始化了CUDA和cuBLAS环境,包括创建句柄和分配工作空间。
-
设备函数:定义了一些设备函数,如
add_float4
,这些函数在GPU上执行,用于进行特定的数学运算。 -
CUDA内核:程序包含多个CUDA内核函数,例如
encoder_forward_kernel3
、encoder_backward_kernel
、layernorm_forward_kernel3
等,这些内核实现了模型的前向传播和反向传播计算。 -
前向传播和反向传播函数:程序实现了
encoder_forward
、encoder_backward
、layernorm_forward
、matmul_forward_cublaslt
等函数,用于执行模型的前向传播和反向传播。 -
注意力机制:实现了注意力机制的前向和后向传播,这是Transformer模型的核心部分。
-
优化器:实现了AdamW优化器的
adamw_kernel2
内核函数,用于更新模型的参数。 -
模型构建和初始化:
gpt2_build_from_checkpoint
函数用于从检查点文件中恢复模型的参数。 -
模型前向传播:
gpt2_forward
函数执行模型的前向传播,并计算损失。 -
模型反向传播和参数更新:
gpt2_backward
函数执行模型的反向传播,计算梯度;gpt2_update
函数使用AdamW优化器更新模型参数。 -
数据加载器:
DataLoader
结构和相关函数用于从文件中加载训练和验证数据。 -
日志记录:
Logger
结构和相关函数用于记录训练过程中的损失和其他信息。 -
主函数:
main
函数是程序的入口点,它初始化模型、数据加载器、日志记录器,然后进入训练循环。在循环中,它执行数据加载、模型前向传播、损失计算、反向传播、参数更新,并定期记录验证损失和生成文本样本。 -
Tokenizer:程序使用了Tokenizer来处理文本数据,将文本转换为模型可以理解的数字ID。
-
命令行参数解析:程序提供了命令行参数解析,以便于用户自定义训练参数。
-
随机数生成:程序实现了随机数生成器,用于文本生成过程中的随机抽样。
-
性能测量:程序使用
clock_gettime
来测量训练步骤的执行时间,并计算每秒处理的令牌数。 -
释放资源:在训练结束后,程序会释放所有分配的资源,包括CUDA内存、文件句柄和日志文件。
这个程序是一个完整的训练循环实现,展示了如何使用CUDA和cuBLAS库在GPU上执行复杂的机器学习模型训练。程序的结构清晰,包含了训练过程中的所有关键步骤,是一个学习如何在GPU上进行深度学习模型训练的很好的示例。