深度学习笔记_10YOLOv8系列自定义数据集实验

news2025/1/12 20:52:28

1、mydaya.yaml 配置方法

# 这里分别指向你训练、验证、测试的文件地址,只需要指向图片的文件夹即可。但是要注意图片和labels名称要对应
# 训练集、测试集、验证机文件路径,可以是分类好的TXT文件,也可以直接是图片文件夹路径
train:   # train images (relative to 'path') 128 images
val:  # val images (relative to 'path') 128 images
test: 

# 共有几个类别
nc : 1

# Classes
names: 
0: person
1: bicycle
2: car

2、配置数据集文件夹

2.1简易配置:

2.2细节配置:

mydata

…dataSet #之后会在Main文件夹内自动生成train.txt,val.txt,test.txt和trainval.txt四个文件,存放训练集、验证集、测试集图片的名字(无后缀.jpg)

…images # 存放图片

…labels # 存放图片对应的标签文件

…xml # 存放图片对应的xml文件

dataSet 文件夹下面存放训练集、验证集、测试集的划分,通过脚本生成,

可以创建一个split_train_val.py文件,代码内容如下:

import os  # 导入操作系统模块,用于文件路径操作
import random  # 导入随机数模块,用于随机抽样

# 设置训练验证数据集占总数据集的百分比
trainval_percent = 0.7
# 设置训练数据集占训练验证数据集的百分比
train_percent = 0.7
# 存储XML文件的文件夹路径
xmlfilepath = 'dataset/data/xml'
# 存储训练验证数据集和测试数据集的路径
txtsavepath = 'dataset/data/dataSet'
# 获取XML文件夹下所有文件的文件名列表
total_xml = os.listdir(xmlfilepath)

# 获取XML文件的总数
num = len(total_xml)
# 生成从0到num-1的列表
list = range(num)
# 计算训练验证数据集的数量
tv = int(num * trainval_percent)
# 计算训练数据集的数量
tr = int(tv * train_percent)
# 从列表中随机抽取tv个元素作为训练验证数据集的索引
trainval = random.sample(list, tv)
# 从训练验证数据集的索引中随机抽取tr个元素作为训练数据集的索引
train = random.sample(trainval, tr)

# 打开训练验证数据集、测试数据集、训练数据集和验证数据集的文件,准备写入数据
ftrainval = open('dataset/data/dataSet/trainval.txt', 'w')
ftest = open('dataset/data/dataSet/test.txt', 'w')
ftrain = open('dataset/data/dataSet/train.txt', 'w')
fval = open('dataset/data/dataSet/val.txt', 'w')

# 遍历总的XML文件列表
for i in list:
    # 获取当前XML文件的文件名,并去除文件扩展名
    name = total_xml[i][:-4] + '\n'
    # 判断当前文件索引是否在训练验证数据集中
    if i in trainval:
        # 将文件名写入训练验证数据集文件
        ftrainval.write(name)
        # 如果当前文件索引在训练数据集中
        if i in train:
            # 将文件名写入训练数据集文件
            ftrain.write(name)
        else:
            # 否则将文件名写入验证数据集文件
            fval.write(name)
    else:
        # 如果当前文件索引不在训练验证数据集中,则将文件名写入测试数据集文件
        ftest.write(name)

# 关闭所有文件
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

创建voc_label.py文件,将训练集、验证集、测试集生成label标签(训练中要用到),同时将数据集路径导入txt文件中,代码内容如下: 

# -*- coding: utf-8 -*-
# xml解析包
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join


sets = ['train', 'test', 'val']
classes = ['E2', 'J20', 'B2', 'F14', 'Tornado', 'F4', 'B52', 'JAS39','Mirage2000']


# 进行归一化操作
def convert(size, box): # size:(原图w,原图h) , box:(xmin,xmax,ymin,ymax)
    dw = 1./size[0]     # 1/w
    dh = 1./size[1]     # 1/h
    x = (box[0] + box[1])/2.0   # 物体在图中的中心点x坐标
    y = (box[2] + box[3])/2.0   # 物体在图中的中心点y坐标
    w = box[1] - box[0]         # 物体实际像素宽度
    h = box[3] - box[2]         # 物体实际像素高度
    x = x*dw    # 物体中心点x的坐标比(相当于 x/原图w)
    w = w*dw    # 物体宽度的宽度比(相当于 w/原图w)
    y = y*dh    # 物体中心点y的坐标比(相当于 y/原图h)
    h = h*dh    # 物体宽度的宽度比(相当于 h/原图h)
    return (x, y, w, h)    # 返回 相对于原图的物体中心点的x坐标比,y坐标比,宽度比,高度比,取值范围[0-1]


# year ='2012', 对应图片的id(文件名)
def convert_annotation(image_id):
    '''
    将对应文件名的xml文件转化为label文件,xml文件包含了对应的bunding框以及图片长款大小等信息,
    通过对其解析,然后进行归一化最终读到label文件中去,也就是说
    一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去
    一张图片文件对应一个xml文件,然后通过解析和归一化,能够将对应的信息保存到唯一一个label文件中去
    labal文件中的格式:calss x y w h  同时,一张图片对应的类别有多个,所以对应的bunding的信息也有多个
    '''
    # 对应的通过year 找到相应的文件夹,并且打开相应image_id的xml文件,其对应bund文件
    in_file = open('/home/featurize/work/yolov5-master/data/mydata/xml/%s.xml' % (image_id), encoding='utf-8')
    # 准备在对应的image_id 中写入对应的label,分别为
    # <object-class> <x> <y> <width> <height>
    out_file = open('/home/featurize/work/yolov5-master/data/mydata/labels/%s.txt' % (image_id), 'w', encoding='utf-8')
    # 解析xml文件
    tree = ET.parse(in_file)
    # 获得对应的键值对
    root = tree.getroot()
    # 获得图片的尺寸大小
    size = root.find('size')
    # 如果xml内的标记为空,增加判断条件
    if size != None:
        # 获得宽
        w = int(size.find('width').text)
        # 获得高
        h = int(size.find('height').text)
        # 遍历目标obj
        # 遍历目标obj
        for obj in root.iter('object'):
            # 获得difficult
            difficult_obj = obj.find('difficult')
            difficult = difficult_obj.text if difficult_obj is not None else '0'
            # 获得类别 =string 类型
            cls = obj.find('name').text
            # 如果类别不是对应在我们预定好的class文件中,或difficult==1则跳过
            if cls not in classes or int(difficult) == 1:
                continue
            # 通过类别名称找到id
            cls_id = classes.index(cls)
            # 找到bndbox 对象
            xmlbox = obj.find('bndbox')
            # 获取对应的bndbox的数组 = ['xmin','xmax','ymin','ymax']
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            print(image_id, cls, b)
            # 带入进行归一化操作
            # w = 宽, h = 高, b= bndbox的数组 = ['xmin','xmax','ymin','ymax']
            bb = convert((w, h), b)
            # bb 对应的是归一化后的(x,y,w,h)
            # 生成 calss x y w h 在label文件中
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


# 返回当前工作目录
wd = getcwd()
print(wd)


for image_set in sets:
    '''
    对所有的文件数据集进行遍历
    做了两个工作:
    1.将所有图片文件都遍历一遍,并且将其所有的全路径都写在对应的txt文件中去,方便定位
    2.同时对所有的图片文件进行解析和转化,将其对应的bundingbox 以及类别的信息全部解析写到label 文件中去
         最后再通过直接读取文件,就能找到对应的label 信息
    '''
    # 先找labels文件夹如果不存在则创建
    if not os.path.exists('/home/featurize/work/yolov5-master/data/mydata/labels'):
        os.makedirs('/home/featurize/work/yolov5-master/data/mydata/labels')
    # 读取在ImageSets/Main 中的train、test..等文件的内容
    # 包含对应的文件名称
    image_ids = open('/home/featurize/work/yolov5-master/data/mydata/dataSet/%s.txt' % (image_set)).read().strip().split()
    # 打开对应的2012_train.txt 文件对其进行写入准备
    list_file = open('/home/featurize/work/yolov5-master/data/mydata/%s.txt' % (image_set), 'w')
    # 将对应的文件_id以及全路径写进去并换行
    for image_id in image_ids:
        list_file.write('/home/featurize/work/yolov5-master/data/mydata/images/%s.jpg\n' % (image_id))
        # 调用  year = 年份  image_id = 对应的文件名_id
        convert_annotation(image_id)
    # 关闭文件
    list_file.close()

# os.system(‘comand’) 会执行括号中的命令,如果命令成功执行,这条语句返回0,否则返回1
# os.system("cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt > train.txt")
# os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

3、选择模型

在ultralytics/models/v8/目录下是模型的配置文件,随着架构的增大,训练时间也是逐渐增大,只用修改一个参数,把nc改成自己的类别数,需要取整。

4、下载预训练模型

Releases · ultralytics/assets (github.com)

5、训练模型

yolo task=detect mode=train model=yolov8.yaml data=mydata.yaml epochs=200 batch=16  pretrained=yolov8n.pt

 训练参数说明:

参数默认值描述设置建议
modelNone模型文件路径,如 yolov8n.pt, yolov8n.yaml根据需要选择合适的预训练模型文件
dataNone数据文件路径,如 coco128.yaml选择合适的数据集配置文件
epochs100训练的周期数根据数据集大小和模型复杂度调整
timeNone训练时间(小时),如果提供,将覆盖epochs参数根据实际训练时间需求设置
patience50早停的周期数,等待无显著改进的周期数根据模型训练动态调整
batch16每个批次的图像数量根据硬件资源调整
imgsz640输入图像的尺寸根据硬件和模型性能要求调整
saveTrue是否保存训练检查点和预测结果通常保持默认
save_period-1每x周期保存检查点,如果<1则禁用根据需要设置
cacheFalse是否使用数据加载缓存,选项:True/ram, disk 或 False根据硬件资源和数据集大小决定
deviceNone运行设备,如 cuda device=0 或 device=cpu根据可用的硬件资源设置
workers8数据加载的工作线程数根据系统资源调整
projectNone项目名称根据需要自定义
nameNone实验名称自定义实验名以便识别
exist_okFalse是否覆盖现有实验如果需要重复实验,设置为True
pretrainedTrue是否使用预训练模型通常对于新的训练任务保持True
optimizer'auto'优化器,可选项:SGD, Adam等根据模型和数据集特性选择合适的优化器
verboseFalse是否打印详细输出开发和调试时可设为True
seed0重现性的随机种子需要重现结果时设置确定值
deterministicTrue是否启用确定性模式需要确保结果一致性时设置为True
single_clsFalse是否将多类数据作为单类训练特定应用场景下调整
rectFalse矩形训练,每个批次为最小填充特定应用场景下调整
cos_lrFalse是否使用余弦学习率调度器根据训练策略调整
close_mosaic10关闭马赛克增强的最后周期数根据训练需求调整
resumeFalse从最后检查点恢复训练需要从中断的训练继续时设置为True
ampTrue是否使用自动混合精度训练根据硬件支持选择
fraction1.0训练的数据集比例如需使用数据集的子集进行训练,调整此值
profileFalse训练期间记录ONNX和TensorRT速度性能分析时启用
freezeNone冻结训练期间的前n层或特定层特定模型调整时使用
lr00.01初始学习率根据模型和数据集特性调整
lrf0.01最终学习率根据训练策略调整
momentum0.937SGD动量/Adam beta1根据优化器类型调整
weight_decay0.0005优化器权重衰减通常保持默认值
warmup_epochs3.0热身周期数根据模型特性调整
warmup_momentum0.8热身初始动量根据训练策略调整
warmup_bias_lr0.1热身初始偏置学习率根据训练策略调整
box7.5盒子损失增益根据模型特性和训练数据调整
cls0.5类别损失增益根据分类任务的复杂性调整
dfl1.5DFL损失增益根据具体应用调整
pose12.0姿态损失增益(仅限姿态)仅在姿态检测任务中使用
kobj2.0关键点目标损失增益(仅限姿态)仅在姿态检测任务中使用
label_smoothing0.0标签平滑(比例)根据训练策略调整
nbs64标称批量大小根据硬件资源调整
overlap_maskTrue掩码在训练期间是否重叠(仅限分割训练)仅在分割任务中使用
mask_ratio4掩码下采样比例(仅限分割训练)仅在分割任务中使用
dropout0.0使用dropout正则化(仅限分类训练)仅在分类任务中使用
valTrue训练期间进行验证/测试通常保持默认
plotsFalse训练/验证期间保存图表和图像需要可视化训练过程时设置为True

6、labels.txt 文件数据说明

使用YOLOv8进行目标检测时,每个图像通常都伴随一个.txt文件,该文件包含了关于图像中对象的标注信息。这些.txt文件中的每一行都代表图像中的一个对象,包含以下信息:

类别ID:这是一个整数,代表了对象所属的类别。例如,如果你的数据集有“人”、“车”和“狗”三个类别,那么可能分别用0、1和2来表示这些类别。

中心X坐标:这是一个归一化后的值,代表对象边界框中心的X坐标(水平方向)。这个值是相对于整个图像宽度的比例。

中心Y坐标:这是一个归一化后的值,代表对象边界框中心的Y坐标(垂直方向)。这个值是相对于整个图像高度的比例。

边界框宽度:这也是一个归一化后的值,代表对象边界框的宽度。这个值是相对于整个图像宽度的比例。

边界框高度:这同样是一个归一化值,代表对象边界框的高度。这个值是相对于整个图像高度的比例。

7、训练结果文件说明

以乳腺癌目标检测结果为例:

best.pt:损失值最小的模型文件
last.pt:训练到最后的模型文件


args.yaml:模型训练的配置参数

confusion_matrix.png - 混淆矩阵
        这张图展示了分类模型的性能。每一行代表模型预测的类别,每一列代表实际的类别。对角线上的数值表示模型正确预测的数量。对角线上较深的颜色表示该类别预测正确的数量较多。

confusion_matrix_normalized.png - 标准化混淆矩阵:
        与普通混淆矩阵类似,但这里的值显示的是每个类别的预测正确比例。这有助于比较不同类别的预测准确性,尤其是在类别样本数量不平衡的情况下。

F1_curve.png - F1-置信度曲线
        此曲线显示了F1得分随着置信度阈值的变化。F1得分是精确度和召回率的调和平均值,曲线的峰值表示给定置信度阈值下精确度和召回率的最佳平衡点。

labels.jpg - 标签分布图和边界框分布图
        柱状图显示了不同类别的实例分布数量。散点图则展示了目标检测任务中边界框的空间分布情况,反映了常见的尺寸和长宽比。

labels_correlogram.jpg - 标签相关图
        相关图提供了不同类别标签之间的关系,以及它们在图像中位置的相关性。这有助于理解模型在识别不同类别时可能出现的关联或混淆。

P_curve.png - 精确度-置信度曲线
        这张曲线图展示了模型预测的精确度随着置信度阈值的变化。精确度是模型预测正确正例与预测为正例总数的比值。

PR_curve.png - 精确度-召回曲线
        这张曲线图展示了模型的精确度与召回率之间的关系。理想情况下,模型应在精确度和召回率之间保持良好的平衡。

R_curve.png - 召回-置信度曲线
        此曲线图显示了模型的召回率随置信度阈值的变化。召回率是模型正确预测的正例与实际正例总数的比值。

results.png 和 results.csv - 训练结果图表和数据


        这些图表和数据文件展示了模型在训练过程中的性能变化,包括损失函数的变化和评估指标(如精确度、召回率和mAP)的变化。

参考博客:

超详细YOLOv8目标检测全程概述:环境、训练、验证与预测详解_yolov8目标检测流程-CSDN博客

一文了解YOLOv8(附带各种任务详细说明链接):计算机视觉领域的新星_yolov8官方文档解读-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1654270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

剁手党必看——转转红包使用规则与最优组合计算全解析

​ 1、省钱攻略基础之“了解平台红包使用规则” 2、举个栗子 3、最优红包组合计算方法进化过程 3.1、初代“笛卡尔乘积”版 3.2、二代“边算边比较Map聚合”版 3.3、三代“边算边比较数组索引定位”版 4、总结 1、省钱攻略基础之“了解平台红包使用规则” 规则一&#x…

BACnet到OPC UA的楼宇自动化系统与生产执行系统(MES)整合

在智能制造的浪潮下&#xff0c;一家位于深圳的精密电子制造企业面临着前所未有的挑战&#xff1a;如何高效地将楼宇自动化系统与生产执行系统&#xff08;MES&#xff09;整合&#xff0c;实现能源管理与生产流程的精细化控制。这家企业的楼宇控制系统使用的是BACnet协议&…

Siemens-NXUG二次开发-创建块(长方体)特征、圆柱特征、圆锥或圆台特征、球体特征、管道特征[Python UF][20240504]

Siemens-NXUG二次开发-创建块&#xff08;长方体&#xff09;特征、圆柱特征、圆锥或圆台特征、球体特征、管道特征[Python UF][20240504] 1.python uf函数1.1 NXOpen.UF.ModlFeatures.CreateBlock11.2 NXOpen.UF.ModlFeatures.CreateCyl11.3 NXOpen.UF.ModlFeatures.CreateCon…

缓存雪崩、击穿、击穿

缓存雪崩&#xff1a; 就是大量数据在同一时间过期或者redis宕机时&#xff0c;这时候有大量的用户请求无法在redis中进行处理&#xff0c;而去直接访问数据库&#xff0c;从而导致数据库压力剧增&#xff0c;甚至有可能导致数据库宕机&#xff0c;从而引发的一些列连锁反应&a…

ORACLE 19C RAC DIAG进程消耗大量内存的分析

近期一个ORACLE 19C的RAC环境&#xff0c;多次出现数据库实例的后台进程DIAG消耗很多内存&#xff08;达到20G&#xff09;&#xff0c;节点1、节点2都出现过次问题。 问题分析&#xff1a;通过对DIAG进程TRACE分析&#xff0c;结合在ORACLE官方后台进行问题、BUG查询匹配&…

什么样的行业适合做私域?

私域营销适用于各种行业&#xff0c;但以下几个行业尤其适合进行私域营销&#xff1a; 1、零售行业&#xff1a;私域营销可以帮助零售企业建立与顾客的直接联系&#xff0c;提高顾客忠诚度和复购率。通过私域营销&#xff0c;零售企业可以进行个性化推荐、定制化服务&#xff…

VALSE 2024 Workshop报告分享┆面向实际场景体验的多模态大模型DeepSeek VL

2024年视觉与学习青年学者研讨会&#xff08;VALSE 2024&#xff09;于5月5日到7日在重庆悦来国际会议中心举行。本公众号将全方位地对会议的热点进行报道&#xff0c;方便广大读者跟踪和了解人工智能的前沿理论和技术。欢迎广大读者对文章进行关注、阅读和转发。文章是对报告人…

视频改字祝福/豪车装X系统源码/小程序uniapp前端源码

uniapp视频改字祝福小程序源码&#xff0c;全开源。创意无限&#xff01;AI视频改字祝福&#xff0c;豪车装X系统源码开源&#xff0c;打造个性化祝福视频不再难&#xff01; 想要为你的朋友或家人送上一份特别的祝福&#xff0c;让他们感受到你的真诚与关怀吗&#xff1f;现在…

通过Nginx转发admin连接licloud-api-develop接口

1.需求配置 在本地环境部署一套开发环境&#xff0c;方便开发金磊调试功能 所使用到的服务有nginx&#xff0c;mysql&#xff0c;rabbitmq&#xff0c;redis&#xff0c;docker 服务安装网上都有教程这里就不一一列举出来了&#xff0c;服务都配置好之后 开始组建开发环境 2…

Java进阶05 时间API异常

Java进阶05 一、递归算法 方法直接&#xff08;自己调自己&#xff09;或间接&#xff08;方法调其他方法&#xff0c;其他方法又回调自己&#xff09;调用自身 1、递归思想 把一个复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。需要注意&#xff0c;设计递…

商务分析方法与工具(五):Python的趣味快捷-文件和文件夹操作自动化

Tips&#xff1a;"分享是快乐的源泉&#x1f4a7;&#xff0c;在我的博客里&#xff0c;不仅有知识的海洋&#x1f30a;&#xff0c;还有满满的正能量加持&#x1f4aa;&#xff0c;快来和我一起分享这份快乐吧&#x1f60a;&#xff01; 喜欢我的博客的话&#xff0c;记得…

考情分析 | 2025年西北工业大学计算机考研考情分析!

西北工业简称西工大&#xff08;英文缩写NPU&#xff09;&#xff0c;大学坐落于古都西安&#xff0c;是我国唯一一所以同时发展航空、航天、航海工程教育和科学研究为特色&#xff0c;以工理为主&#xff0c;管、文、经、法协调发展的研究型、多科性和开放式的科学技术大学。十…

如果出现一个工具,可以让前端开发彻底不用再手写UI,这个工具意义大吗?干货!

求这样的一个工具&#xff0c;可以让后端开发、嵌入式开发、产品经理、UI设计师都能用&#xff0c;注意&#xff0c;不是在一个简单的静态页生成&#xff0c;也不是类似飞冰那种 generator &#xff0c;而是真正让设计师和开发者在各自的那侧达成自治&#xff0c;可以做到吗&am…

电-热耦合市场联合出清!考虑均衡约束的综合能源系统电-热分配方法程序代码!

前言 随着现代城市面临环境问题&#xff0c;原来燃煤的水和空间供暖设备已逐渐被电锅炉和热泵等电气设备所取代。此外&#xff0c;集中生产热能并通过管网分配热能的区域供暖系统&#xff0c;由于其更高的效率&#xff0c;在冬季漫长寒冷的国家和地区越来越受欢迎。供暖设备的…

牛客题-链表内区间反转

链表内区间反转 这是代码 typedef struct ListNode listnode; struct ListNode* reverseBetween(struct ListNode* head, int m, int n ) {if (head NULL) {return NULL;}listnode* findhead head;listnode* findtail head;listnode* prev NULL;int count1 m;int count2…

CTF-reverse二维四向迷宫路径求解

二维四向迷宫是一个re中的常考点&#xff0c;说不上难&#xff0c;但也不简单&#xff0c;本篇记录了常规的二维四向迷宫解题套路以及帮助快速解题的脚本 可能你看我的教程会觉得十分繁琐&#xff0c;但实际只要你用了一次熟练之后&#xff0c;基本都是拿到迷宫就一题一分钟解决…

深入学习Linux内核页框回收

目录 算法 1.选择目标页 2.PFRA设计 3.反向映射 3.1.匿名页的反向映射 3.2.try_to_unmap_anon()函数 3.3.try_to_unmap_one()函数 映射页的反向映射 优先搜索树 try_to_unmap_file()函数 PFRA实现 最近最少使用(LRU)链表 在LRU链表之间移动页 mark_page_accessed(…

【优选算法】——双指针——Leetcode——283.移动零

目录 ​编辑 1.题目 2. 解法&#xff08;快排的思想&#xff1a;数组划分区间-数组分两块&#xff09;&#xff1a; 1.算法思路&#xff1a; 2.算法流程&#xff1a; 3.代码实现 1.C语言 2.C 1.题目 283. 移动零 提示 给定一个数组 nums&#xff0c;编写一个函数将所有…

每日一题 非对称之美

题目描述 I-非对称之美_牛客小白月赛31 (nowcoder.com) 题目解析 贪心算法的应用 考虑以下情况&#xff1a;当字符串中的字符全部相同时&#xff0c;即使删除任意一个字符&#xff0c;也无法使其成为一个回文串。这种情况下&#xff0c;我们无法直接套用上述的逐步比较方法。…

【Android】Room数据库的简单使用方法

Room数据库的使用方法 目录 1、添加Room数据库的依赖2、Entity——定义实体类 2.1 定义主键——PrimaryKey2.2 字段注解——ColumnInfo 3、Dao——定义数据访问对象4、Database——数据库 4.1 通过回调观察数据库是否创建成功 5、使用时注意点6、编写异步 DAO 查询 6.1 写异步…