面试笔记——多线程使用场景

news2024/11/24 14:29:50

线程池使用场景(CountDownLatch, Future)

CountDownLatch
CountDownLatch(闭锁/倒计时锁)用来进行线程同步协作,等待所有线程完成倒计时(一个或者多个线程,等待其他多个线程完成某件事情之后才能执行)。

  • 构造参数用来初始化等待计数值
  • await() 用来等待计数归零
  • countDown() 用来让计数减一

在这里插入图片描述
上图中,给定初始值count = 3,调用await方法来判断count是否为0,若不为0,则将线程挂起等待,当count等于0之后,该线程才能继续执行。T2,T3,T4执行时,它们都调用了countdown(),每一次调用这个方法,都会对count减一。因此,调用了3次之后,T1线程继续执行。

CountDownLatch的使用demo:

import java.util.concurrent.CountDownLatch;

public class CountDownLatchDemo {

    public static void main(String[] args) throws InterruptedException {
        //初始化了一个倒计时锁 参数为 3
        CountDownLatch latch = new CountDownLatch(3);

        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName()+"-begin...");
            try {
                Thread.sleep(1500);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            //count--
            latch.countDown();
            System.out.println(Thread.currentThread().getName()+"-end..." +latch.getCount());
        }).start();
        String name = Thread.currentThread().getName();
        System.out.println(name + "-waiting...");
        //等待其他线程完成
        latch.await();
        System.out.println(name + "-wait end...");
    }
    
}

运行结果:

Thread-0-begin...
Thread-1-begin...
main-waiting...
Thread-2-begin...
Thread-0-end...2
Thread-2-end...1
Thread-1-end...0
main-wait end...

使用场景一——批量导入:
项目上线之前,需要把数据库中的数据一次性的同步到es索引库中,数据可能有1000万左右,一次性读取数据肯定不行(oom异常),可以使用线程池的方式导入,利用CountDownLatch来控制,就能避免一次性加载过多,防止内存溢出:
在这里插入图片描述
在这里插入图片描述
使用场景二——数据汇总:
在一个电商网站中,用户下单之后,需要查询数据,数据包含了三部分:订单信息、包含的商品、物流信息;这三块信息都在不同的微服务中进行实现的,可以通过线程池实现,提升查询效率:
在这里插入图片描述
在实际开发的过程中,难免需要调用多个接口来汇总数据,如果所有接口(或部分接口)的没有依赖关系,就可以使用线程池+future来提升性能。

使用场景三——异步线程:
在很多软件中,都提供了搜索功能,并且会记录用户的搜索记录。在实现搜索功能的时候,不能让搜索功能受到保存搜索记录的影响,通常采取异步的方式来保存搜索记录,通过异步线程来实现该功能。当用户输入关键字开始搜索后,正常返回用户搜索的相关数据,再开一个线程来记录用户的历史记录,并把这个新开的线程放到线程池中去执行。

控制方法允许并发访问的线程数量

Semaphore 信号量,是JUC包下的一个工具类,底层是AQS,我们可以通过其限制执行的线程数量。

使用场景:通常用于那些资源有明确访问数量限制的场景,常用于限流 。

Semaphore使用步骤

  • 创建Semaphore对象,可以给一个容量
  • semaphore.acquire(): 请求一个信号量,这时候的信号量个数-1(一旦没有可使用的信号量,也即信号量个数变为负数时,再次请求的时候就会阻塞,直到其他线程释放了信号量)
  • semaphore.release():释放一个信号量,此时信号量个数+1
import java.util.concurrent.Semaphore;

public class SemaphoreCase {
    public static void main(String[] args) {
        // 1. 创建 semaphore 对象
        Semaphore semaphore = new Semaphore(3);
        // 2. 10个线程同时运行
        for (int i = 0; i < 10; i++) {
            new Thread(() -> {
                try {
                    // 3. 获取许可,计数-1
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                try {
                    System.out.println("running...");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("end...");
                } finally {
                    // 4. 释放许可  计数+1
                    semaphore.release();
                }
            }).start();
        }
    }

}

对ThreadLocal的理解

ThreadLocal是多线程中对于解决线程安全的一个操作类,它会为每个线程都分配一个独立的线程副本从而解决了变量并发访问冲突的问题。ThreadLocal 同时实现了线程内的资源共享。

ThreadLocal基本使用:

  • set(value) 设置值——ThreadLocal 自己作为 key,资源对象作为 value,放入当前线程的 ThreadLocalMap 集合中
  • get() 获取值——以 ThreadLocal 自己作为 key,到当前线程中查找关联的资源值
  • remove() 清除值——以 ThreadLocal 自己作为 key,移除当前线程关联的资源值

demo:

public class ThreadLocalTest {
    static ThreadLocal<String> threadLocal = new ThreadLocal<>();

    public static void main(String[] args) {
        new Thread(() -> {
            String name = Thread.currentThread().getName();
            threadLocal.set("value1");
            print(name);
            System.out.println(name + "-after remove : " + threadLocal.get());
        }, "t1").start();
        new Thread(() -> {
            String name = Thread.currentThread().getName();
            threadLocal.set("value2");
            print(name);
            System.out.println(name + "-after remove : " + threadLocal.get());
        }, "t2").start();
    }

    static void print(String str) {
        //打印当前线程中本地内存中本地变量的值
        System.out.println(str + " :" + threadLocal.get());
        //清除本地内存中的本地变量
        threadLocal.remove();
    }

}

输出:

t1 :value1
t1-after remove : null
t2 :value2
t2-after remove : null

ThreadLocal本质来说就是一个线程内部存储类,从而让多个线程只操作自己内部的值,从而实现线程数据隔离。
在这里插入图片描述
set方法:
在这里插入图片描述

get方法/remove方法:
在这里插入图片描述
ThreadLocal——内存泄漏

Java对象中的四种引用类型:强引用、软引用、弱引用、虚引用

  • 强引用:最为普通的引用方式,表示一个对象处于有用且必须的状态,如果一个对象具有强引用,则GC并不会回收它。即便堆中内存不足了,宁可出现OOM,也不会对其进行回收。
    • User user = new User();
  • 弱引用:表示一个对象处于可能有用且非必须的状态。在GC线程扫描内存区域时,一旦发现弱引用,就会回收到弱引用相关联的对象。对于弱引用的回收,无关内存区域是否足够,一旦发现则会被回收
    User user = new User(); 
    WeakReference weakReference = new WeakReference(user);
    

每一个Thread维护一个ThreadLocalMap,在ThreadLocalMap中的Entry对象继承了WeakReference。其中key为使用弱引用的ThreadLocal实例,value为线程变量的副本(强引用):

static class Entry extends WeakReference<ThreadLocal<?>> {
    /** The value associated with this ThreadLocal. */
    Object value;

    Entry(ThreadLocal<?> k, Object v) {
        super(k);
        value = v;
    }
}

在这里插入图片描述
避免ThreaLocal内存泄漏——通过remove方法主动释放key、value。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1649255.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

经典面试题之滑动窗口专题

class Solution { public:int minSubArrayLen(int target, vector<int>& nums) {// 长度最小的子数组 // 大于等于 targetint min_len INT32_MAX;// 总和int sum 0;int start 0; // 起点for(int i 0; i< nums.size(); i) {sum nums[i];while(sum > targe…

【如此简单!数据库入门系列】之效率基石 -- 磁盘空间管理

文章目录 1 前言2 磁盘空间管理3 磁盘空间管理的实现4 存储对象关系5 总结6 系列文章 1 前言 如何将表中的记录存储在物理磁盘上呢&#xff1f; 概念模式中&#xff0c;记录&#xff08;Record&#xff09;表示表中的一行数据&#xff0c;由多个列&#xff08;字段或者属性&…

mysql5.7数据库安装及性能测试

mysql5.7数据库安装及性能测试 记录Centos7.9下安装mysql 5.7并利用benchmark工具简单测试mysql的性能。 测试机&#xff1a;centos7.9 配置&#xff1a;4C8G40G 1. 下安装mysql5.7 安装mysql5.7&#xff1a; # 通过官方镜像源安装$ wget http://dev.mysql.com/get/mysql57-com…

如何用virtualbox 来跑openwrt 镜像?

1.下载好openwrt源代吗&#xff0c;编译之前先配置&#xff0c;让编译产生x86的virtualbox 镜像&#xff1a; 编译完成之后会产生vdi镜像文件&#xff0c; 在virtualbox 中创建一虚拟机&#xff0c;类型选择linux,版本other linux 64: 内存选择512&#xff1a; 这个地方把镜像…

【牛客】【模板】二维前缀和

原题链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 二维前缀和板题。 二维前缀和&#xff1a;pre[i][j]a[i][j]pre[i-1][j]pre[i][j-1]-pre[i-1][j-1]; 子矩阵 左上角为(x1,y1) 右下角(x2,y2…

使用openssl创建https证书

原文地址&#xff1a;使用openssl创建https证书-腾讯云开发者社区-腾讯云 从今天开始笔者打算和大家聊一聊http2这个协议&#xff0c;想要说清楚http2协议就必须亲手搭建一个http2的服务&#xff0c;并且对比http2和http1.1的特点&#xff0c;从而了解http2的一些新特性。 ht…

ESP32 IDF linux下开发环境搭建

文章目录 介绍升级Python环境下载Python包配置编译环境及安装Python设置环境变量 ESPIDF环境搭建下载esp-idf 代码编译等待下载烧录成功查看串口打印 介绍 esp32 官方文档给的不是特别详细 参考多方资料 最后才完成开发 主要问题在于github下载的很慢本教程适用于ubuntu deban…

华为eNSP中型企业局域网网络规划设计(下)

→b站传送门&#xff0c;感谢大佬← →华为eNSP中型企业局域网网络规划设计&#xff08;上&#xff09;← →拓扑图传送门&#xff0c;可以自己配置着玩← 配置ospf AR3 [AR3]ospf 1 router-id 3.3.3.3 //出口默认路由 [AR3-ospf-1]default-route-advertise always #area…

2024上半年软考新规,对高级论文科目不太友好

辽宁省发布了《关于2024年上半年计算机技术与软件专业技术资格(水平)考试批次安排的通知》&#xff0c;通知原文如下&#xff1a; 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 1.…

C 语言文件输入/输出(I/O)函数大全

C 语言文件输入/输出&#xff08;I/O&#xff09;函数大全 1. fopen() 函数2. fclose() 函数3. fread() 函数4. fwrite() 函数5. fseek() 函数6. ftell() 函数7. rewind() 函数8. feof() 函数9. ferror() 函数10. clearerr() 函数 &#x1f60a; C 语言文件输入/输出&#xf…

SparkSQL与Hive整合 、SparkSQL函数操作

SparkSQL与Hive整合 SparkSQL和Hive的整合&#xff0c;是一种比较常见的关联处理方式&#xff0c;SparkSQL加载Hive中的数据进行业务处理&#xff0c;同时将计算结果落地回Hive中。 整合需要注意的地方 1)需要引入hive的hive-site.xml&#xff0c;添加classpath目录下面即可…

国家信息安全水平等级考试NISP一级题目(包含答案)

国家信息安全水平等级考试NISP一级题目 有任何想要咨询NISP都可以私信博主 1&#xff0e; 下列关于用户口令说法错误的是&#xff08; &#xff09;。 A.口令不能设置为空 B.口令长度越长&#xff0c;安全性越高 C.复杂口令安全性足够高&#xff0c;不需要定期修改 D.口令认证…

软件测试之 自动化测试 基于Python语言使用Selenium、ddt、unitTest 实现自动化测试

你好,我是Qiuner. 为记录自己编程学习过程和帮助别人少走弯路而写博客 这是我的 github gitee 如果本篇文章帮到了你 不妨点个赞吧~ 我会很高兴的 &#x1f604; (^ ~ ^) 想看更多 那就点个关注吧 我会尽力带来有趣的内容 本文档是一年前学后记得笔记 现在居然还记得很清楚 基于…

ASV1000视频监控平台:接入支持JT808标准的设备

目录 一、JT/T 808标准简介 &#xff08;一&#xff09;概述 &#xff08;二&#xff09;标准内容简介 1、消息分类 2、位置信息 3、报警信息 4、车辆控制 5、数据转发 二、在ASV1000上通过JT808添加设备 &#xff08;一&#xff09;登录视频监控平台管理端 &#x…

深度学习之基于Vgg16卷积神经网络乳腺癌诊断系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 基于VGG16卷积神经网络的乳腺癌诊断系统项目是一个结合深度学习技术和医学图像处理的创新项目&#xff0c;旨在提高…

嵌入式全栈开发学习笔记---C语言笔试复习大全14

目录 指针初级 指针的概念 指针类型 指针类型长度 指针的定义 通过指针访问数据 p1和*p1的区别 指针做函数参数 上一篇复习了8道编程题&#xff0c;这篇开始正式复习之指针&#xff01; 说明&#xff1a;我们学过单片机的一般都是有C语言基础的了&#xff0c;网上关于C…

Sarcasm detection论文解析 |用于微博讽刺检测的上下文增强卷积神经网络

论文地址 论文地址&#xff1a;Context-augmented convolutional neural networks for twitter sarcasm detection - ScienceDirect 论文首页 笔记大纲 用于微博讽刺检测的上下文增强卷积神经网络 &#x1f4c5;出版年份:2018 &#x1f4d6;出版期刊:Neurocomputing &#x1f…

Golang | Leetcode Golang题解之第71题简化路径

题目&#xff1a; 题解&#xff1a; func simplifyPath(path string) string {stack : []string{}for _, name : range strings.Split(path, "/") {if name ".." {if len(stack) > 0 {stack stack[:len(stack)-1]}} else if name ! "" &am…

以中国为目标的DinodasRAT Linux后门攻击场景复现

概述 在上一篇《以中国为目标的DinodasRAT Linux后门剖析及通信解密尝试》文章中&#xff0c;笔者对DinodasRAT Linux后门的功能及通信数据包进行了简单剖析&#xff0c;实现了对DinodasRAT Linux后门心跳数据包的解密尝试。 虽然目前可对DinodasRAT Linux后门的通信数据包进…

Davinci工程开发方法论

基本概念 Flash Driver是下载到RAM里面的bin文件 Boot Manager是ROM上启动运行的第一个实例&#xff0c;可以是独立的bin文件&#xff0c;可以是集成在FBL里面。 Bootloader存储在ROM里面的bin文件 Demo Appl一个示例模板&#xff0c;用来跳转到Bootloader的&#xff0c;也是一…