基于昇腾AI | 英码科技EA500I使用AscendCL实现垃圾分类和视频物体分类应用

news2024/11/19 23:28:02

现如今,人工智能迅猛发展,AI赋能产业发展的速度正在加快,“AI+”的需求蜂拥而来,但AI应用快速落地的过程中仍存在很大的挑战:向下需要适配的硬件,向上需要完善的技术支持,两者缺一不可。

基于此,昇腾推出了系列化行业SDK和参考设计,通过把千行百业细分场景的开发经验和行业知识沉淀下来、水平复制,从而大幅度降低门槛、简化开发、提升效率。而英码科技是昇腾重要的APN合作伙伴、金牌分销商,具有较强的自主设计硬件能力,双方紧密携手,打造软硬结合、更符合行业需求的算力底座,赋能产业快速、低成本数字化转型。

今天来介绍英码科技EA500I边缘计算盒子使用AscendCL快速实现垃圾分类和视频物体分类应用的案例,帮助开发者降低学习成本、简化开发流程,缩短项目周期!

图片

  案例概述

①垃圾分类应用:基于AscendCL,使用EA500I实现对图片中的垃圾类别进行检测,并输出有检测类别的图片;

②视频物体分类应用:基于GoogLeNet分类网络,使用EA500I实现对视频帧中的物体进行识别分类,并将分类的结果展示在PC网页上。

案例说明

本案例底层原理逻辑请参考华为昇腾AscendCL <垃圾分类>,和<视频物体分类>案例。

前置条件

图片

基于EA500I实现垃圾分类应用

1、环境安装

注意事项:

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题

①配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。
vi ~/.bashrc  
# 在文件最后一行后面添加如下内容。
source ${HOME}/Ascend/ascend-toolkit/set_env.sh
source /home/work/MindX_SDK/mxVision-5.0.RC3/set_env.sh

export CPU_ARCH=`arch`
export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件
export PYTHONPATH=${THIRDPART_PATH}/acllite:$PYTHONPATH #设置pythonpath为固定目录
export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件
export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改
export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境
export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境
# 执行命令保存文件并退出。
:wq!  
# 执行命令使其立即生效。
source ~/.bashrc
# 创建samples相关依赖文件夹
mkdir -p ${THIRDPART_PATH}
# 下载源码并安装git
cd ${HOME}
sudo apt-get install git
git clone https://gitee.com/ascend/samples.git
# 拷贝公共文件到samples相关依赖路径中
cp -r ${HOME}/samples/common ${THIRDPART_PATH} 
# 拷贝media_mini等so文件以及相关头文件
mkdir -p ${INSTALL_DIR}/driver
cp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令
cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/
cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

②安装python-acllite

# 安装ffmpeg部分依赖
sudo apt-get install -y libavformat-dev libavcodec-dev libavdevice-dev libavutil-dev libswscale-dev 
# 安装其它依赖
pip3 install --upgrade pip
pip3 install Cython
sudo apt-get install pkg-config libxcb-shm0-dev libxcb-xfixes0-dev
# 安装av
pip3 install av
# 安装pillow 的依赖
sudo apt-get install libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk
# 安装numpy和PIL
pip3 install numpy
pip3 install Pillow
# 将acllite目录拷贝到第三方文件夹中。后续编译依赖libmedia_mini.so,编译完成后需替换此处的acllite文件夹
cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}
# C码库编译,本库包含Atlas200dk的板载摄像头访问接口,该接口是在C码(lib/src/目录)基础上做的python封装。
cd ${HOME}/samples/python/common/acllite/lib/src
make 
# 编译生成的libatalsutil.so在../atlas200dk/目录下。
# 再次将acllite目录拷贝到第三方文件夹中,保证当前使用的是更新后的代码。
cp -r ${HOME}/samples/python/common/acllite ${THIRDPART_PATH}

2、模型获取&转换

# 进入案例路径,samples为前置步骤中下载的案例包
cd ${HOME}/samples/python/contrib/garbage_picture
# 在model路径下下载原始模型
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com:443/003_Atc_Models/AE/ATC%20Model/garbage/mobilenetv2.air --no-check-certificate
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/insert_op_yuv.cfg --no-check-certificate
# 使用ATC工具进行模型转换
atc --model=./mobilenetv2.air --framework=1 --output=garbage_yuv --soc_version=Ascend310B1 --insert_op_conf=./insert_op_yuv.cfg --input_shape="data:1,3,224,224" --input_format=NCHW
 

3、测试数据获取

# 创建并进入data文件夹
cd ${HOME}/samples/python/contrib/garbage_picture
mkdir data
cd data
# 下载图片数据
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/newspaper.jpg
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/bottle.jpg    
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/garbage_picture/dirtycloth.jpg
# 进入案例运行路径 
cd ../src

4、运行案例

运行python代码:

# 此处的data为测试数据路径
python3 classify_test.py ../data/

➢运行成功后如无报错会显示以下信息:

图片

5、案例展示

在案例根目录out文件夹下会生成带有检测类别的图片:

图片

图片

图片

基于EA500I实现视频物体分类应用

1、环境安装

注意事项

➢以下操作以普通用户HwHiAiUser安装CANN包为例说明,推荐使用root用户进行操作,如果是root用户,请将安装准备中所有的${HOME}修改为/usr/local。

➢推荐按照本文档路径进行操作,如安装在自定义路径可能会导致环境冲突等问题。

①配置相关环境

# 以安装用户在任意目录下执行以下命令,打开.bashrc文件。
vi ~/.bashrc  
# 在文件最后一行后面添加如下内容。
export CPU_ARCH=`arch`
export THIRDPART_PATH=${HOME}/Ascend/thirdpart/${CPU_ARCH}  #代码编译时链接samples所依赖的相关库文件
export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH  #运行时链接库文件
export INSTALL_DIR=${HOME}/Ascend/ascend-toolkit/latest #CANN软件安装后的文件存储路径,根据安装目录自行修改
export DDK_PATH=${HOME}/Ascend/ascend-toolkit/latest #声明CANN环境
export NPU_HOST_LIB=${DDK_PATH}/runtime/lib64/stub #声明CANN环境
# 执行命令保存文件并退出。
:wq!  
# 执行命令使其立即生效。
source ~/.bashrc 
# 创建samples相关依赖文件夹
mkdir -p ${THIRDPART_PATH}
# 下载源码并安装git
cd ${HOME}
sudo apt-get install git
git clone https://gitee.com/ascend/samples.git
# 拷贝公共文件到samples相关依赖路径中
cp -r ${HOME}/samples/common ${THIRDPART_PATH}
# 拷贝media_mini等so文件以及相关头文件
mkdir -p ${INSTALL_DIR}/driver
cp /usr/lib64/libmedia_mini.so ${INSTALL_DIR}/driver/ #如路径中没有相关so文件,可跳过该命令
cp /usr/lib64/libslog.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libc_sec.so ${INSTALL_DIR}/driver/
cp /usr/lib64/libmmpa.so ${INSTALL_DIR}/driver/
cp /usr/local/Ascend/include/peripheral_api.h ${INSTALL_DIR}/driver/ #如路径中没有相关头文件,可跳过该命令

②安装opencv

# 执行以下命令安装opencv (注:请确保安装的版本是3.x)
sudo apt-get install libopencv-dev
# 如果安装的opencv版本为4.x,请执行下列命令链接对应头文件
sudo ln -s /usr/include/opencv4/opencv2 /usr/include/

安装protobuf&presentagent

# 安装protobuf相关依赖
sudo apt-get install autoconf automake libtool
# 下载protobuf源码
cd ${HOME}
git clone -b 3.13.x https://gitee.com/mirrors/protobufsource.git protobuf
# 编译安装protobuf
cd protobuf
./autogen.sh
./configure --prefix=${THIRDPART_PATH}
make clean
make -j8
sudo make install
# 进入presentagent源码目录并编译
cd ${HOME}/samples/cplusplus/common/presenteragent/proto 
${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ #该步骤报错可参考FAQ
# 开始编译presentagnet
cd ..
make -j8
make install

2、模型转换&获取

注意事项

➢本案例使用基于Caffe的GoogLeNet模型,获取模型的命令已提供,如果开发者需要更多模型信息可参考:<模型链接>

# 进入案例路径,samples为前置步骤中下载的案例包
cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/model
# 在model路径下下载原始模型
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.caffemodel
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/AE/ATC%20Model/classification/googlenet.prototxt
# 在model路径下下载模型配置文件
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/googlenet_imagenet_video/insert_op.cfg
# 使用ATC工具进行模型转换
atc --model="./googlenet.prototxt" --weight="./googlenet.caffemodel" --framework=0 --output="googlenet" --soc_version=Ascend310B1 --insert_op_conf=./insert_op.cfg --input_shape="data:1,3,224,224" --input_format=NCHW

3、编译运行案例

1、执行编译脚本

# 进入脚本路径
cd ${HOME}/samples/cplusplus/level2_simple_inference/1_classification/googlenet_imagenet_video/scripts
# 赋予脚本权限 
chmod +x sample_build.sh    
# 执行编译脚本
bash sample_build.sh

➢执行编译脚本后请根据实际情况选择arm/x86格式,在EA500I上进行操作请选择:arm

图片

➢编译脚本中会自动下载相关视频素材:cat.mp4,如开发者使用其它素材,可以在sample_build.sh处删除该命令

图片

➢编译完成后会生成相关文件并提示complete

图片

2、执行脚本运行案例

# 赋予脚本权限 
chmod +x sample_run.sh    
# 执行运行脚本
bash sample_run.sh
 

➢执行运行脚本后,如果有本设备有多个ip,请选择能连通外网的ip并进行输入,例:10.1.30.111

图片

➢执行成功后,会提示successfully,并提供相关的网页链接

图片

➢运行脚本默认读取cat.mp4素材,如开发者使用其它素材,可以在sample_run.sh处更改素材路径

图片

4、案例展示

打开浏览器输入提供的网页链接与端口号,例:10.1.30.111:7007

➢进入下图界面后,等待状态栏变为绿色,可以单击“Refresh“刷新,当有数据时相应的Channel 的Status变成绿色。

➢状态栏正常后,点击右侧的View Name下的名字 ,例:classify

图片

➢进入视频物体分类界面后,会在视频左上角显示检测的物体类别,视频上方显示视频帧率,开发者可进行截图、录像等功能。

图片

5、相关FAQ

①安装protobuf&presentagent时执行${THIRDPART_PATH}/bin/protoc presenter_message.proto --cpp_out=./ 

报错:protoc not such file or directory

➢该报错可能是protobuf安装问题:

# 回到protobuf安装路径cd /usr/local/probuf# 再次执行make installmake install# 查看${THIRDPART_PATH}/bin/下是否有protoc

②执行编译脚本时报错如下图:

图片

➢该报错可能是opencv版本问题:

# 进入报错代码
vi ../src/classify_process.cpp
# 修改报错代码第279行(请根据实际代码行数修改)
修改成:cv::IMWRITE_JPEG_QUALITY
# 执行命令保存文件并退出
:wq!
# 重新执行编译脚本
bash sample_build.sh
 

结语

以上就是英码科技EA500I边缘计算盒子基于昇腾AscendCL快速实现垃圾分类和视频物体分类应用的案例。选购英码科技基于昇腾AI芯片推出的边缘计算产品,即可参照以上流程快速实现相关应用,大幅降低开发学习时间,缩短项目周期!如有技术问题和产品定制需求,欢迎留言交流~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1636698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C语言】深入了解文件:简明指南

&#x1f308;个人主页&#xff1a;是店小二呀 &#x1f308;C语言笔记专栏&#xff1a;C语言笔记 &#x1f308;C笔记专栏&#xff1a; C笔记 &#x1f308;喜欢的诗句:无人扶我青云志 我自踏雪至山巅 文章目录 一、文件的概念1.1 文件名:1.2 程序文件和数据文件 二、数据文…

香港上市现货比特币及以太坊ETF,首日交易量不及预期

原创 | 刘教链 在BTC&#xff08;比特币&#xff09;继续回调至61k一线&#xff0c;眼见就要在连续7个月收涨后&#xff0c;终于迎来一个收跌的4月之际&#xff0c;香港如期上市了现货比特币ETF和以太坊ETF&#xff0c;成为全球继美国推出现货比特币ETF之后&#xff0c;亚洲首个…

Aker(安碁科技)晶振产品应用和选型

一、石英晶体振荡器简介 在电子电路系统中&#xff0c;特定的动作需要严格按照一定的顺序进行&#xff0c;以确保数据被正确处理和操作&#xff0c;时钟信号就成了系统工作的重要引导者。而且在多模块复杂电路系统中&#xff0c;为了确保不同功能模块能协调一致地工作&#xf…

网络安全是智能汽车下一个要卷的方向?

2024年一季度&#xff0c;中国汽车市场延续了2023年的风格&#xff0c;核心就是「卷」。 2023年&#xff0c;我国汽车市场爆发「最强价格战」&#xff0c;燃油车的市场空间不断被挤压&#xff0c;如今只剩下最后一口气。近日乘联会发布4月1-14日最新数据&#xff0c;新能源&am…

ARM功耗管理背景及挑战

安全之安全(security)博客目录导读

使用 scikit-learn 进行机器学习的基本原理-2

介绍 scikit-learn 估计器对象 每个算法都通过“Estimator”对象在 scikit-learn 中公开。 例如&#xff0c;线性回归是&#xff1a;sklearn.linear_model.LinearRegression 估计器参数&#xff1a;估计器的所有参数都可以在实例化时设置&#xff1a; 拟合数据 让我们用 nump…

频谱模拟器

频谱模拟器&#xff0c;特别是模拟频谱仪&#xff0c;是一种基于特定原理的频谱分析工具。以下是对其的详细介绍&#xff1a; 工作原理&#xff1a; 模拟频谱仪的工作原理主要基于频率转换原理&#xff0c;包括两个关键步骤&#xff1a;信号混频和滤波分析。 信号混频&#xf…

el-table-column 表格列自适应宽度的组件封装说明

针对组件业务上的需求&#xff0c;需要给 el-table-column 加上限制&#xff0c;需保证表头在一行展示&#xff0c;部分列的内容要一行展示&#xff0c;自适应单项列的宽度&#xff1b; 1、先计算数据渲染后的 el-table-column 文本宽度&#xff1b; 因列表的有些数据需要做到…

OpenCV的图像矩(64)

返回:OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV如何为等值线创建边界旋转框和椭圆(63) 下一篇 :OpenCV系列文章目录&#xff08;持续更新中......&#xff09; Image Moments&#xff08;图像矩&#xff09;是 OpenCV 库中的一个…

后端方案设计文档结构模板可参考

文章目录 1 方案设计文档整体结构2 方案详细设计2.1 概要设计2.2 详细设计方案2.2.1 需求分析2.2.2 业务流程设计2.2.3 抽象类&#xff1a;实体对象建模2.2.4 接口设计2.2.5 存储设计 1 方案设计文档整体结构 一&#xff0c;现状&#xff1a;把项目的基本情况和背景都说清楚&a…

Golang | Leetcode Golang题解之第60题排列序列

题目&#xff1a; 题解&#xff1a; func getPermutation(n int, k int) string {factorial : make([]int, n)factorial[0] 1for i : 1; i < n; i {factorial[i] factorial[i - 1] * i}k--ans : ""valid : make([]int, n 1)for i : 0; i < len(valid); i {…

如何避免被恶意攻击的IP地址

随着互联网的普及和发展&#xff0c;网络安全问题日益受到关注&#xff0c;恶意攻击成为网络安全的一大威胁。而IP地址作为网络通信的基础&#xff0c;常常成为恶意攻击的目标之一。本文将探讨如何避免被恶意攻击的IP地址&#xff0c;提高网络安全水平。 1. 定期更新安全补丁 …

AC+AP三层组网实验(华为)

一&#xff0c;技术简介 APAC架构是一种常见的无线局域网&#xff08;WLAN&#xff09;组网方式&#xff0c;主要由接入点&#xff08;Access Point&#xff0c;简称AP&#xff09;和接入控制器&#xff08;Access Controller&#xff0c;简称AC&#xff09;组成。 在APAC架构…

Stable Diffusion教程:额外功能/后期处理/高清化

"额外功能"对应的英文单词是Extras&#xff0c;算是直译。但是部分版本中的翻译是“后期处理”或者“高清化”&#xff0c;这都是意译&#xff0c;因为它的主要功能是放大图片、去噪、修脸等对图片的后期处理。注意这里边对图片的处理不是 Stable Diffusion 本身的能…

使用docker创建rocketMQ主从结构,使用

1、 创建目录 mkdir -p /docker/rocketmq/logs/nameserver-a mkdir -p /docker/rocketmq/logs/nameserver-b mkdir -p /docker/rocketmq/logs/broker-a mkdir -p /docker/rocketmq/logs/broker-b mkdir -p /docker/rocketmq/store/broker-a mkdir -p /docker/rocketmq/store/b…

Python+PYGObject/PYGtk+CSS样式--2024python示例

隔久点不用老是会忘&#xff0c;留个笔记。。 PythonPYGObject/PYGtk&#xff0c;加载 CSS 样式的演示代码 demo 运行的效果截图&#xff1a; #!/usr/bin/env python3 import sys import gigi.require_version("Gtk", "3.0") from gi.repository import …

飞书API(6):使用 pandas 处理数据并写入 MySQL 数据库

一、引入 上一篇了解了飞书 28 种数据类型通过接口读取到的数据结构&#xff0c;本文开始探讨如何将这些数据写入 MySQL 数据库。这个工作流的起点是从 API 获取到的一个完整的数据&#xff0c;终点是写入 MySQL 数据表&#xff0c;表结构和维格表结构类似。在过程中可以有不同…

大型企业总分支多区域数据传输,效率为先还是安全为先?

大型企业为了业务拓展需要&#xff0c;会在全国乃至全球各地设立分公司和办事机构&#xff0c;以便更好地处理当地事务&#xff0c;并进行市场的开拓和客户维护&#xff0c;此时&#xff0c;企业内部就衍生出了新的业务需求&#xff0c;即多区域数据传输。 多区域很难准确定义&…

C++相关概念和易错语法(10)(定位new、模板)

1.定位new 我们使用类来实例化对象&#xff0c;开辟空间的时候会自动去调用它的构造函数。但在那篇博客我就特意强调过&#xff0c;使用a.A()的方式是错误的&#xff0c;A()根本不会被识别为一个构造函数&#xff0c;而会被识别为A类型。因此我们要注意最好在实例化对象&#…

test4282

欢迎关注博主 Mindtechnist 或加入【智能科技社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和技术。关…