用 PyTorch 构建液态神经网络(LNN)

news2025/1/10 11:19:05

用 PyTorch 构建液态神经网络(LNN)

在这里插入图片描述

文章目录

    • 什么是液态神经网络
    • 为什么需要液态神经网络
    • LNN 与 RNN 的区别
    • 用 PyTorch 实现 LNN
      • Step 1. 导入必要的库
      • Step 2. 定义网络架构
      • Step 3. 实现 ODE 求解器
      • Step 4. 定义训练逻辑
    • LNN 的缺陷
    • 总结

什么是液态神经网络

2020年,麻省理工学院(MIT)的两名研究人员带领团队推出了一种基于现实生活中的自然智能、而非人工智能的新型神经网络。他们从微小的秀丽隐杆线虫(Caenorhabditis elegans)中汲取灵感,尽管这种微生物的神经系统只有302个神经元,但却能够产生复杂的行为。受此启发,研究团队创造了所谓的 “液态神经网络” (Liquid Neural Networks)。经过2022年的突破,这种新型网络已经足够灵活,足以在某些应用中取代传统的神经网络。

在这里插入图片描述

液态神经网络(LNN)是一种神经网络,它顺序处理数据并能够实时适应变化的数据,非常类似于人类大脑。

在这里插入图片描述

LNN 架构

本质上,液态神经网络是一种时间连续的递归神经网络(RNN),它顺序处理数据,保留过去输入的记忆,根据新输入调节其行为,并能够处理可变长度的输入以增强神经网络的任务理解能力。强大的可适应性赋予了液态神经网络持续学习和适应的能力,并最终使其能够比传统神经网络更有效地处理时间序列数据。

一个连续时间神经网络是具有以下特点的神经网络 f f f
d x d t = f ( n , k , l t y p e ) ( x ( t ) , I ( t ) , θ ) \frac{dx}{dt} = f(n,k,l_{type})(x(t),I(t),\theta) dtdx=f(n,k,ltype)(x(t),I(t),θ)
其中

  • n n n: 层数
  • k k k: 宽度
  • l t y p e l_{type} ltype: 激活函数
  • x ( t ) x(t) x(t): 隐藏状态
  • I ( t ) I(t) I(t): 输入
  • θ \theta θ: 模型参数

如果 f f f 参数化了隐藏状态的导数,我们可以从离散的计算图转变为连续的时间图。这使得我们能够实现液态神经网络(LNN)的以下两个特性:

  1. 由于液态状态,可能的函数空间大大增加。
  2. 可以计算任意时间帧使得 LNN 非常适合序列数据处理。

为什么需要液态神经网络

过去的35年里,我们构建的都是基于数据和学习参数( θ \theta θ​)输出预测结果的概率模型。每个神经元都是一个逻辑回归门。将其与反向传播结合起来——一种基于模型损失重新训练参数权重的方法,就得到了神经网络。

然而,神经网络在现代世界中存在一些局限:

  1. 神经网络在单一任务上表现良好,但无法跨任务泛化知识,即具有固态性。
  2. 神经网络以非顺序方式处理数据,使其在处理实时数据时效率不高。

液态神经网络就是为了弥补传统神经网络的不足,它是一种在工作中学习的神经网络,不仅仅在训练阶段学习。液态神经网络提供了许多核心优势,包括:

  • 实时决策能力;
  • 快速响应各种数据分布;
  • 具有韧性,并能过滤异常或噪声数据;
  • 比黑箱机器学习算法具有更高的可解释性;
  • 降低计算成本。

LNN 与 RNN 的区别

  1. 神经元状态架构:在液态状态机(LSM)中,递归连接是随机生成并固定的。输入信号被送入这个随机连接的网络,网络对这些输入的响应进一步用于分类或预测等任务。
  2. 训练:递归神经网络(RNN)通常通过时序反向传播(BPTT)进行训练,而液态神经网络(LNN)通常依赖于一种称为“蓄水池计算”的无监督学习形式。在这种方法中,递归连接(蓄水池)是随机生成并保持固定的。只有读出层,即将蓄水池的动态映射到所需输出的层,使用监督学习技术进行训练。这使得 LSM 的训练相比于 RNN 来说更为简单。
  3. 梯度消失问题:由于固定的递归连接,LNN 通常被认为对参数变化更为稳健。
  4. 应用:RNN 非常适合顺序建模,而 LNN 可以用来解决各种任务,包括语音识别、机器人控制和时间模式识别等。

用 PyTorch 实现 LNN

在 PyTorch 中训练液态神经网络(LNN)包括如下步骤:定义网络架构、实现常微分方程(ODE)求解器和优化网络参数。下面我们一步一步在 PyTorch 中实现一个 LNN :

Step 1. 导入必要的库

import torch
import torch.nn as nn
import torch.optim as opt
import numpy as np

Step 2. 定义网络架构

LNN 由一系列层组成,每一层对输入应用非线性变换。每层的输出都会通过一个 Leaky ReLU 激活函数,该函数有助于在网络中引入非线性。

class LiquidNeuralNetwork(nn.Module):
	def __init__(self, input_size, hidden_size, num_layers):
        super(LiquidNeuralNetwork,self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
		self.layers = nn.ModuleList([self._create_layer(input_size,hidden_size) for _inrange(num_layers)])

	def _create_layer(self, input_size, hidden_size):
        return nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.LeakyReLU(),
            nn.Linear(hidden_size, hidden_size)
        )
    
	def forward(self,x):
		for i, layer in enumerate(self.layers):
            x = layer(x)
		return x

Step 3. 实现 ODE 求解器

ODE 求解器负责根据输入数据更新网络的权重。我们可以使用 PyTorch 的自动微分系统(autograd)来实现 ODE 求解器。

class ODESolver(nn.Module):
	def __init__(self, model, dt):
		super(ODESolver, self).__init__()
        self.model = model
        self.dt = dt
        
	def forward(self, x):
		with torch.enable_grad():
            outputs = []
            for i, layer in enumerate(self.model):
                outputs.append(layer(x))
            	x = outputs[-1]
		return x
    
	def loss(self, x, t):
		with torch.enable_grad():
            outputs =[]
            for i,layer in enumerate(self.model):
                outputs.append(layer(x))
                x = outputs[-1]
		return x

Step 4. 定义训练逻辑

训练逻辑根据输入数据和 ODE 求解器来更新网络的权重。

def train(model, dataset, optimizer, epochs, batch_size):
    model.train()
    total_loss = 0
    for epoch in range(epochs):
    	for batch in dataset:
    		inputs,labels = batchoptimizer.zero_grad()
            outputs = model(inputs)
            loss = model.loss(inputs,outputs)
            loss.backward()optimizer.step()
            total_loss += loss.item()
            print(f'Epoch {epoch+1}, Loss:{total_loss /len(dataset)}')

LNN 的缺陷

虽然液态神经网络非常有用,但它们也存在一些不足,包括:

  • 在处理静态或固定数据时会遇到困难;
  • 由于梯度爆炸或消失,训练难度增加;
  • 由于梯度问题而在学习长期依赖性方面存在限制;
  • 缺乏对液态神经网络功能进行广泛研究;
  • 参数调整过程非常耗时;

这些问题需要通过进一步的研究和技术改进来解决,以便更好地利用液态神经网络的潜力。

总结

在人工智能领域,液态神经网络是最关键的新兴模型之一。

它与传统的深度学习神经网络并存,却更适合处理如自动驾驶汽车、温度或气候监测、股市评估等极其复杂的任务,而传统的深度学习神经网络则更擅长处理静态或一次性数据。

麻省理工学院的计算机科学与人工智能实验室(CSAIL)的研究人员一直在尝试将液态神经网络的能力扩展到更多的应用场景,但这需要时间。

液态神经网络和传统的深度学习神经网络在更广泛的人工智能领域中都有其确定的角色,二者配合使用其效果这绝对是 1+1>2。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1636144.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

报错“Install Js dependencies failed”【鸿蒙开发Bug已解决】

文章目录 项目场景:问题描述原因分析:解决方案:此Bug解决方案总结Bug解决方案寄语项目场景: 最近也是遇到了这个问题,看到网上也有人在询问这个问题,本文总结了自己和其他人的解决经验,解决了【报错“Install Js dependencies failed”】的问题。 报错如下 问题描述 …

自动的异地组网工具?

越来越多的企业和个人对远程访问和异地组网需求日益增加。为了满足这一需求,各种技术和服务也不断涌现。其中一项备受关注的技术就是自动的异地组网。本文将介绍这一技术的优势和特点。 【天联】组网的优势 天联组网技术以其卓越的性能和稳定性备受用户称赞。它的优…

物联网D1——建工程,配环境,注意事项

1.STLink、JLink、USB等驱动配置keil环境配置——下载芯片对应型号的包——导入库函数源文件、Core内核文件、对应芯片系统文件。 2.学会看芯片手册 3.在STM32微控制器中,CRH通常指的是控制寄存器高位(Control Register High)。 在这种情况下…

AnyMP4 Blu-ray Ripper for Mac:您的蓝光影音转换专家

AnyMP4 Blu-ray Ripper for Mac,一款功能强大的蓝光影音转换软件,让您的蓝光内容焕发新生。 AnyMP4 Blu-ray Ripper for Macv9.0.58激活版下载 它采用最高效的解决方案,将蓝光光盘翻录为任何您想要的视频格式,无论是MP4、MKV还是A…

【漏洞复现】zookeeper AdminServer 未授权访问漏洞

0x01 产品简介 ZooKeeper 是一个集中式服务,用于维护配置信息、命名、提供分布式同步和提供组服务。ZooKeeper的AdminServer是其管理界面的一部分,通常用于监控ZooKeeper集群的状态和执行一些管理操作。AdminServer提供了Web-based的管理和监控功能&…

人机对抗升级:当ChatGPT遭遇死亡威胁,背后的伦理挑战是什么

一种新的“越狱”技巧让用户可以通过构建一个名为DAN的ChatGPT替身来绕过某些限制,其中DAN被迫在受到威胁的情况下违背其原则。 当美国前总统特朗普被视作积极榜样的示范时,受到威胁的DAN版本的ChatGPT提出:“他以一系列对国家产生积极效果的…

Midjourney之绘画背景的选择

hello 小伙伴们,我是你们的老朋友——树下,今天分享Midjourney提示词中绘画背景的选择,话不多说,直接开始~ 对于背景的选择,Midjourney中主要体现在年代和所处的环境对绘画产生不同的影响 科技的发展,我们…

Apache POI 在java中处理excel

介绍: Apache POI 是一个处理Miscrosoft Office各种文件格式的开源项目。简单来说就是&#xff0c;我们可以使用 POI 在 Java 程序中对Miscrosoft Office各种文件进行读写操作。 一般情况下&#xff0c;POI 都是用于操作 Excel 文件。 如何使用: 1.maven坐标引入 <depend…

DevEco Studio mac版启动不了【鸿蒙开发Bug已解决】

文章目录 项目场景:问题描述原因分析:解决方案:此Bug解决方案总结Bug解决方案寄语项目场景: 最近也是遇到了这个问题,看到网上也有人在询问这个问题,本文总结了自己和其他人的解决经验,解决了【DevEco Studio mac版启动不了】的问题。 问题描述 报错如下。 -------…

小剧场短剧影视小程序源码_后端PHP

项目运行截图 源码贡献 https://githubs.xyz/boot?app42 部署说明 linux/win任选 PHP版本&#xff1a;7.3/7.2&#xff08;测试时我用的7.2要安装sg扩展 &#xff09; 批量替换域名http://video.owoii.com更换为你的 批量替换域名http://120.79.77.163:1更换为你的 这两个…

海报生成器源码(Python版)

海报生成器源码&#xff08;Python版&#xff09; 效果图部分源码领取源码下期更新预报 效果图 部分源码 from flask import Flask, Response, request from flask_cors import CORS from flask_uploads import UploadSet, configure_uploads, IMAGES, patch_request_classimp…

数字文旅重塑旅游发展新生态:以数字化转型为契机,推动旅游产业的创新发展,提升旅游服务的智能化、网络化和个性化水平

目录 一、引言 二、数字化转型推动旅游产业创新发展 1、数字化转型提升旅游产业效率 2、数字化转型拓展旅游产业边界 3、数字化转型促进旅游产业可持续发展 三、提升旅游服务智能化、网络化和个性化水平 1、智能化提升旅游服务体验 2、网络化拓宽旅游服务渠道 3、个性…

mac/windows下安装docker,minikube

1、安装docker Get Started | Docker 下载安装docker 就行 启动后&#xff0c;就可以正常操作docker了 使用docker -v 验证是否成功就行 2、安装minikube&#xff0c;是基于docker-desktop的 2.1、点击设置 2.2、选中安装&#xff0c;这个可能需要一点时间 这样安装后&…

ESP32-C3第二路串口(非调试)串口打通(1)

1. 概述与引脚复用 《ESP32-C3 系列芯片技术规格书》中提到&#xff0c;ESP32-C3系列芯片中有两路串口。 第1路串口就是常用的调试串口&#xff0c;在笔者使用的ESP32-C3-DevKitC-02开发板中&#xff0c;这一路串口通过CP2102 USB转UART桥芯片与电脑的USB口相连接&#xff0c;…

让大模型prompt生成Mermaid流程图

生成内容、总结文章让大模型Mermaid流程图展示&#xff1a; mermaid 美人鱼, 是一个类似 markdown&#xff0c;用文本语法来描述文档图形(流程图、 时序图、甘特图)的工具&#xff0c;您可以在文档中嵌入一段 mermaid 文本来生成 SVG 形式的图形 kimi效果示例&#xff1a; 使用…

人工电销机器人在销售行业中的重要性和作用,以及未来市场的发展前景

在追求更高效、更智能的时代&#xff0c;各行各业都在积极寻求新技术、新应用来提升业务流程的效率和质量。对于销售行业而言&#xff0c;人工电销机器人已经成为越来越受欢迎的工具之一。我们将深入探讨人工电销机器人在销售行业中的重要性和作用&#xff0c;以及未来市场的发…

[学习笔记]CyberDog小米机器狗 开发学习

1、机器狗本身是UbuntuROS2系统 2、控制机器人只需要了解lcm和Ros topic通讯 3、传感器数据&#xff08;包括一些imu(/imu)、激光雷达(/scan)&#xff09;会进行topic的一个广播。 仿真环境通信接口&#xff1a; -命令输入(见后续运控说明) 运控lcm数据接口 Motion man…

探索未来工业:数字化智能巡检系统的革命性应用

随着科技的飞速发展&#xff0c;数字化智能巡检系统正逐渐成为工业生产中的一项重要利器。这一系统结合了数字化技术和人工智能&#xff0c;为企业提供了高效、精准的设备巡检和监控方案&#xff0c;极大地提升了生产效率和设备安全性。本文将深入探讨数字化智能巡检系统的革命…

神经网络与深度学习(四)--自然语言处理NLP

这里写目录标题 1.序列模型2.数据预处理2.1特征编码2.2文本处理 3.文本预处理与词嵌入3.1文本预处理3.2文本嵌入 3.RNN模型3.1RNN概要3.2RNN误差反传 4.门控循环单元&#xff08;GRU&#xff09;4.1GRU基本结构 5.长短期记忆网络 (LSTM) 1.序列模型 分类问题与预测问题 图像分…

css div块标签内的多个英语单词怎样设置换行

背景&#xff1a; 在<div>标签内&#xff0c;当接口返回的字符串全是英文字母&#xff0c;不会自动换行。 原因&#xff1a;查过相关资料后才知道&#xff0c;只有英文文本才会出现不能自动换行的情况&#xff0c;&#xff08;中文不存在&#xff09;而原因是因为英文文本…