【数据分析面试】34.填充NaN值 (Python:groupby/sort_value/ffill)

news2024/11/24 5:23:40

在这里插入图片描述

题目:填充NaN值 (Python)

给定一个包含三列的DataFrame:client_id、ranking、value

编写一个函数,将value列中的NaN值用相同client_id的前一个非NaN值填充,按升序排列。

如果不存在前一个client_id,则返回前一个值。

输入:

print(clients_df)
client_idrankingvalue
100111000
10012NaN
100131200
100211500
100221250
10023NaN
100311100
10032NaN

输出:

client_idrankingvalue
100111000
100211500
100311100
100121000
100221250
100321100
100131200
100231250

答案

解题思路

该问题的关键在于确定每个NaN值应该被填充的值。我们需要按照client_idranking升序排列DataFrame,并逐行处理NaN值。

答案代码

import pandas as pd

def fill_nan(df):
    df.sort_values(by=['client_id', 'ranking'], inplace=True)  # 按client_id和ranking升序排列
    df['value'] = df.groupby('client_id')['value'].ffill()  # 使用前一个非NaN值填充NaN
    return df

# 示例DataFrame
clients_df = pd.DataFrame({
    'client_id': [1001, 1001, 1001, 1002, 1002, 1002, 1003, 1003],
    'ranking': [1, 2, 3, 1, 2, 3, 1, 2],
    'value': [1000, None, 1200, 1500, 1250, None, 1100, None]
})

print(fill_nan(clients_df))

groupby/sort_value/ffill

groupby()

官方文档:
pandas.DataFrame.groupby — pandas 2.2.2 documentation

语法说明:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True,dropna=True)
  • by: 指定用于分组的列名或列名列表。
  • axis: 指定分组的轴向,默认为 0 表示按行分组。
  • level: 如果轴是多层索引的,则指定要在该级别上分组。
  • as_index: 指定是否将分组键作为索引,默认为 True。
  • dropna: 指定是否将 NaN 值排除在分组之外,默认为 True。

参数axis : 在2.1.0之后的版本被移除。对于 axis=1,使用 frame.T.groupby(...)

sort_values()

官方文档:pandas.DataFrame.sort_values — pandas 2.2.2 documentation

语法说明:

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False)
  • by: 指定用于排序的列名或列名列表。
  • axis: 指定排序的轴向,默认为 0 表示按行排序。
  • ascending: 指定是否按升序排序,默认为 True。
  • inplace: 指定是否在原地排序,默认为 False。

ffill()

官方文档 :pandas.DataFrame.ffill — pandas 2.2.2 documentation

语法说明:

DataFrame.ffill(axis=None, inplace=False, limit=None)
  • axis: 指定填充方向,默认为 None 表示沿着列的方向填充。
  • inplace: 指定是否在原地填充,默认为 False。
  • limit: 指定填充的最大连续 NaN 值的数量,默认为 None 表示不限制。

ffill 是 “forward fill”,向前填充缺失值,与之相对应的是bfill ,全称是 “backward fill”,意思是向后填充缺失值,即使用后一个非 NaN 值来填充缺失值。

更多详细答案可关注公众号查阅。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1633010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小红书从记忆机制解读信息检索,提出新范式获得 EACL Oral

近日,来自小红书搜索算法团队的论文《Generative Dense Retrieval: Memory Can Be a Burden》被自然语言处理领域国际会议 EACL 2024 接收为 Oral,接受率为 11.32%(144/1271)。 他们在论文中提出了一种新颖的信息检索范式——生成…

python环境安装jupyter

安装完毕之后下一步可以参考:配置jupyter的启动路径-CSDN博客 1 前提条件:python环境 系统:win10 python:本地已经有python,可以查看本地的python版本: C:\Users\PC>python --version Python 3.8.10 …

为什么本国货币的贬值会导致本国物价的上涨

本国货币贬值意味着其对外国货币的汇率下降,也就是说,同样数量的本国货币现在能兑换的外国货币减少了。这种情况下,本国货币的购买力相对于外国货币减弱了。本国货币贬值可能导致本国物价上涨的几个原因: 进口成本上升&#xff1a…

38.WEB渗透测试-信息收集-信息收集-企业信息收集(5)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:37.WEB渗透测试-信息收集-企业信息收集(4) 上个内容用到了cdn&am…

Windows Server 评估版转换(升级)为完整版

临时方法 获取 Windows Server 的剩余宽限期 Slmgr /dliWindows Server免费试用期可以使用以下命令合法延长5次,共180天: slmgr /rearm这意味着所评估的 Windows Server 的最长可用时间为 3 年 ( 180 days * 6)。 试用期到期后,Windows S…

Python对Excel两列数据进行运算

👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Python对Excel两列数据进行运算 在日常工作中,经常会遇到需要对Excel表格中的数…

win中python中OpenCV使用cv2.imshow()报错的解决办法

1. 问题 cv2.error: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\highgui\src\window.cpp:1272: error: (-2:Unspecified error) The function is not implemented. Rebuild the library with Windows, GTK 2.x or Cocoa support. If you are on Ubuntu o…

STM32读写备份寄存器BKP

今天学习的读写STM32的备份寄存器BKP的步骤,这节知识是比较简单的,一共也就两大部: 这个BKP寄存器的意思就是在芯片的VB引脚上接个电池,就能保存其寄存器中的数据掉电不丢失。先来看看电池的接法: 好,下面…

3分钟了解拍摄VR全景需要哪些硬件

VR全景图片是一张水平方向360度,垂直方向180度, 图片尺寸宽高比为2:1的图片。 通过720yun APP或720yun官网上传生成全景H5页面,即可360度全方位观看画面中的景象。 拍摄VR全景有很多方法,下面介绍用单反相机、全景相机、智能手机…

【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)

【Paddle】PCA线性代数基础及领域应用 写在最前面一、PCA线性代数基础1. PCA的算法原理2. PCA的线性代数基础2.1 标准差 Standard Deviation2.2 方差 Variance2.3 协方差 Covariance2.4 协方差矩阵 The Covariance Matrix2.5 paddle代码demo①:计算协方差矩阵2.6 特…

华院计算登榜『2024福布斯中国人工智能科技企业TOP 50』

4月28日,福布斯中国正式发布“2024福布斯中国人工智能科技企业TOP 50”榜单。华院计算凭借其在人工智能领域的卓越成就与深远影响力,荣膺殊荣,成功跻身榜单。 工业和信息化部2024年4月表示,中国人工智能企业数量已超过4,500家。AI…

你的3D模型不是数字孪生!

大型资产的新技术往往是根据其带来运营效率提升的能力来判断的。 但是,当一项令人兴奋的创新出现时,运营商通常会承担经过计算的风险并对其潜力进行投资,即使该技术缺乏保证在规定时间范围内带来收益的验证。 数字孪生(digital …

学习笔记:能量信号与功率信号(一)

目录 一、能量信号(Energy Signal) 二、功率信号(Power Signal) 三、信号关系图 四、总结 能量信号和功率信号是信号分析中两个基本的概念,它们主要用来描述信号在时间域中能量分布的特性,对于理解信号…

LLM - 大语言模型(LLM) 的 评估体系

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/138160155 大语言模型(LLM)的评估是复杂且多维的过程,涉及多个方面,包括评估体系、评估方法、评估实践。评估体系包括评估数据集、模型输出、样本/输出变换…

idm下载速度慢解决办法 idm批量下载怎么用 idm优化下载速度 Internet Download Manager解决下载速度慢的方法教程

IDM (Internet Download Manager)是一款兼容性大,支持多种语言的下载管理软件,它可以自动检测并下载网页上的内容,这正是这一优点,使得它受到了广大用户的喜爱。但是在下载的过程中,我们会遇到idm下载速度慢怎么回事&a…

酷克数据启动鲲鹏原生应用开发合作

4月28日,北京酷克数据科技有限公司(以下简称“酷克数据”)与华为举办鲲鹏原生应用开发启动仪式。酷克数据将基于鲲鹏硬件底座、OpenEuler、开发套件Kunpeng DevKit、应用使能套件Kunpeng BoostKit开展面向金融、政务、电信、能源、交通等重点…

推荐七款公司防泄密软件|数据防泄漏软件排行榜

最近常常有客户反馈:公司日夜辛苦做的设计图纸出现在竞品公司手中;客户名单泄露,客户被离职员工撬走;带有商业机密的U盘丢失……一些列问题困扰着大多数企业,每一次泄密事件的发生都会给企业带来高额的财产经济损失。 …

【Ant-Desgin 头像上传框】限制数量为1张图片,base64,其他需求可以改我组件中的代码

Ant-Desgin 头像上传框 样式图参数主要代码UpLoad 组件父组件 样式图 图片数量限制为1,当选择了图片后,需要切换图像时需点击头像完成切换 参数 /*** description: 图片上传组件* param {*} action: 上传地址* param {*} width: 宽度* param {*} height…

大数据机器学习:常见模型评估指标

大数据机器学习:常见模型评估指标 一.模型评估综述 1.1 什么是模型评估 模型评估是指在机器学习中,对于一个具体方法输出的最终模型,使用一些指标和方法来评估它的泛化能力。这一步通常在模型训练和模型选择之后,正式部署模型之…

ES全文检索支持拼音和繁简检索

ES全文检索支持拼音和繁简检索 1. 实现目标2. 引入pinyin插件2.1 编译 elasticsearch-analysis-pinyin 插件2.2 安装拼音插件 3. 引入ik分词器插件3.1 已有作者编译后的包文件3.2 只有源代码的版本3.3 安装ik分词插件 4. 建立es索引5.测试检索6. 繁简转换 1. 实现目标 ES检索时…