Python语言在地球科学交叉领域中的应用

news2025/1/17 23:01:25

Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。除了Python标准库,几乎所有行业领域都有相应的Python软件库,随着NumPy、SciPy、Matplotlib和Pandas等众多Python应用程序库的开发,Python在科学和工程领域地位日益重要,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面的优异性能使得Python在地球科学中地理、气象、气候变化、水文、生态、传感器等领域的学术研究和工程项目中得到广泛应用并高效解决各种数据分析问题,可以预见未来Python将成为科学和工程领域的主流程序设计语言。

1、提供虚拟机(Virtual Box)文件(预装好Anaconda环境,可直接使用)

2、提供原始数据和中间临时文件

专题一、Python重点工具讲解【打好基础】

Numpy:科学计算

Scipy:科学计算

Sklearn:机器学习

Matplotlib:可视化

Cartopy:地理数据可视化

图片

GeoPandas:地理数据分析

图片

专题二、常见地球科学数据讲解【掌握数据的特点】

1、站点数据:

GSOD

GHCN

图片

ISMN:国际土壤湿度测量网络数据

图片

FLUXNET:全球通量观测网络数据

图片

2、格点观测数据

CRU

图片

CN05.1

OISST、HadSST

3、再分析:

ERA5

GLDAS

图片

4、遥感数据:

GLEAM

图片

Landsat

图片

MODIS

图片

TRMM

图片

SMAP:土壤湿度主动被动遥感数据

专题三、使用Xarray处理netCDF和Geotiff数据 Xarray

读取&写入 netCDF文件

Groupby & resample 对时间、空间信息进行操作

Rasterio & rioxarray

专题四、使用Pysat进行大空间分析

1. 空间自相关分析

分析干旱事件发生的空间聚集性

2. 空间回归模型

建模气温与地形因素的空间关系

GWR模型评估地形对降水分布的局部影响 

3. 空间点模式分析

探测极端天气事件的热点区域

4. 时空数据分析

评估城市热岛效应的时空演化

专题五、使用Dask进行大数据并行计算

使用Dask进行大数据并行计算

Arrays、DataFrames

无结构数据的并行处理

延迟计算

案例一:

并行处理长时间序列的TRMM降水数据,识别极端降水事件的时空分布特征

案例二:

利用Dask并行计算,快速监测全球范围内干旱的发生、发展和持续时间

专题六、使用Pandas分析时间序列数据-1

案例一:时间序列填补

 

图片

案例二:极端风速重现期分析

图片

案例三:台风个数统计

图片

专题七、使用Pandas分析时间序列数据-2

1、环流指数与温度、降水变化的关联性

各环流指数对全球及区域温度变化的影响

环流指数与极端高温/低温事件的联系

环流指数与干旱/洪水事件的关联

环流指数对季风系统的影响

2、空间插值

使用Kriging进行站点数据插值 

使用IDW插值生成高分辨率气温场

图片

3、缺测数据插补

针对地面站点数据中的缺失值进行插补

利用机器学习算法插补遥感数据中的缺测像元

结合空间插值和时间插值等多种方法提高数据质量

专题八、使用Python处理遥感

数据1、以Landsat数据为例

1、大数据的可视化

GB级数据可视化

2、植被指数计算

图片

3、裁剪区域

使用mask掩膜文件裁剪

使用shapefile文件裁剪

专题九、使用Python处理遥感

数据2—以MODIS数据为例

1、预备工作:

Python读取HDF4-EOS数据

使用GDAL库预处理

转投影为wgs84+lonlat

拼接多景影像

2、案例一:土地利用分析(MOD12C1)

2000-2020年青藏高原土地利用分析

分析不同土地利用分类上气温和降水的变化

图片

3、案例二:生态系统生产力分析(MOD17A2)

青藏高原草场上土地利用GPP变化

分析草场GPP与降水之间关系(ERA5再分析数据)

图片

4、案例三:分析积雪覆盖时间(MOD10A2)

2000-2020年间青藏高原积雪时间统计

分析祁连山不同高程带积雪时间统计(DEM:GTOP30S)

图片

5、案例四:积雪与生产力之间的关系(MOD10A2和MOD17A2)

分析新疆北疆积雪覆盖时间与春季GPP的变化

专题十、使用Python处理站点数据以GSOD和气象共享网数据为例

1、数据的读取

读取美国NOAA的GSOD日值数据

读取气象共享网日值数据

2、数据清洗:

数据整理

异常值检测

阈值法

模型法

孤立森林

3、多时间尺度的统计:

年尺度统计

季尺度统计

4、站点插值:(随机森林树)

利用高程、经纬度插值气温数据

专题十一、使用Python处理遥感水文数据以TRMM遥感降水数据和GLEAM数据等 案例一:空间降尺度

使用NDVI、DEM和机器学习算法对TRMM降水数据降尺度

案例二:分析蒸散数据的年际变化

读取GLEAM数据,并分析蒸散发的年际变化

比较MODIS ET产品与GLEAM的差异

案例三:使用随机森林算法估算地表蒸散发

GLEAM和ERA5数据建立机器学习估算模型

在区域尺度上进行长时间序列模拟

图片

3、案例三:比较多套土壤湿度产品

比较GLDAS、GLEAM和CCI SM

图片

案例四:分析降水~蒸散发-土壤湿度关系

分析降水~蒸散发-土壤湿度的年际变化

专题十二、使用Python处理遥感和模式数据

以PKU GIMMS NDVI遥感降水数据和GLDAS数据为例

案例一:结合GIMMS NDVI和陆面模式数据分析干旱影响

获取陆面模式模拟的土壤湿度数据

建立植被生产力与干旱的响应关系

评估不同地区的干旱敏感性

案例二:青藏高原地区干旱对高寒草地生态系统的影响

基于NDVI识别青藏高原历史干旱年份

结合GLDAS模拟的土壤温湿度等数据,分析干旱对植被的影响机制

专题十三、使用Python处理气候变化数据1观测数据

案例一:百年气温趋势:CRU数据

图片

案例二:百年海温趋势:HadSST

图片

案例三:再分析数据处理

ERA5数据气温评估

专题十四、使用Python进行气候诊断分析

在GHCN站点数据基础上

使用Mann-Kendall趋势检验

使用Mann-Kendall突变分析

和Sen's slope估计气候变化趋势

使用小波分析等分析周期

专题十五、使用Python处理气候变化数据2以CMIP6数据为例

降尺度

Delta方法

百分位校正方法

图片

案例一:计算极端气候指数

图片

案例二:未来气候变化背景下中国地区GPP变化(CMIP6+MOD17+机器学习)

案例三:未来气候变化背景下中国地区土地利用变化

图片

专题十六、使用Python对WRF模式数据后处理

案例一:空间坐标重采样

案例二:风速垂直高度插值

获取风机70和100m高度的风速和风向

图片

专题十七、使用Python运行生态模型以CN05.1数据和Biome-BGC生态模型为例

1、模型讲解

2、气象数据的准备

3、控制文件生成

4、模式的运行

Muliprocesing 并行运行

5、模式后处理

结果统计

结果可视化(NPP)

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247686676&idx=3&sn=758db448cf19e1ec623538dae7453c39&chksm=fa774529cd00cc3ffcdf8e1fe1618b1e8ddaed47705e5b71a44c76161412fe86e95bb7341fe7&token=1908211715&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1628200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

羊大师分析,羊奶相伴五一畅享自然时光

羊大师分析,羊奶相伴五一畅享自然时光 羊奶相伴,五一畅享自然时光,这是一句富有诗意和生活气息的语句。羊奶,作为一种营养丰富、易于消化的饮品,不仅为人们提供了优质的蛋白质、矿物质和维生素,还因其独特…

vue echarts 柱状图 堆叠柱状图

echarts堆叠柱状图&#xff08;效果图在文章末尾&#xff09; 1、默认只显示 月度的 数据&#xff0c;手动点击 legend 季度的 数据才会显示&#xff1b; 2、监听左侧菜单栏的宽度变化&#xff0c;图表宽度自适应展示 <template><div><div id"barChart&q…

01数学建模 -线性规划

1.1线性规划–介绍 翻译翻译什么叫惊喜 1.2线性规划–原理 拉格朗日乘数法手算 最值化 f ( x , y ) , s . t . g ( x , y ) c , 引入参数 λ &#xff0c;有&#xff1a; F ( x , y , λ ) f ( x , y ) λ ( g ( x , y ) − c ) 再将其分别对 x , y , λ 求导&#xff0c…

MySQL第一次作业

解压完安装包 以管理员进入命令行 初始化并记住初始随机密码 创建服务名称 启动mysql 使用随机密码登录 修改密码 退出并重登服务器 MySQL创建数据库和表 创建数据库 创建表 1.进入数据库 创建表 向表中插入数据

服务器数据恢复—ESXi无法识别数据存储和VMFS文件系统如何恢复数据?

服务器数据恢复环境&#xff1a; 一台某品牌服务器&#xff0c;通过FreeNAS来做iSCSI&#xff0c;然后使用两台同品牌服务器做ESXi虚拟化系统。 FreeNAS层为UFS2文件系统&#xff0c;使用整个存储建一个稀疏模式的文件&#xff0c;挂载到ESXi虚拟化系统。ESXi虚拟化系统中有3台…

吴恩达2022机器学习专项课程(一)7.2 逻辑回归的简化成本函数课后实验 Lab5

问题预览/关键词 二分类问题的训练集&#xff08;多特征&#xff09;绘制训练集数据的散点图自定义plot_data() Python实现逻辑回归的成本函数自定义sigmoid() 调用成本函数不同的w&#xff0c;b&#xff0c;绘制逻辑回归模型的决策边界验证哪条决策边界效果好总结 二分类问题的…

【科学研究】农村出身:一种复杂的情感结构

::: block-1 “时问桫椤”是一个致力于为本科生到研究生教育阶段提供帮助的不太正式的公众号。我们旨在在大家感到困惑、痛苦或面临困难时伸出援手。通过总结广大研究生的经验&#xff0c;帮助大家尽早适应研究生生活&#xff0c;尽快了解科研的本质。祝一切顺利&#xff01;—…

前后缀分离,CF1209 C. Maximal Intersection

目录 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 二、解题报告 1、思路分析 2、复杂度 3、代码详解 一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 Problem - 1029C - Codeforces 二、解题报告 1、思路分析 线段相交具有可…

【网络安全】HTTP协议 — 特点

专栏文章索引&#xff1a;网络安全 有问题可私聊&#xff1a;QQ&#xff1a;3375119339 目录 学习目标​ 一、请求与响应 1.服务器和客户端 二、不保存状态 1.不保存状态的协议 三、资源定位 1.URI&#xff08;统一资源标识符&#xff09; 四、请求方法 1.请求方法 五…

LangChain4j

文章目录 关于 LangChain4j特性2 levels of abstractionLibrary StructureTutorials (User Guide)Integrations and Models免责声明 Highlights定义由LLM提供支持的声明性 AI Services&#xff1a;使用 LLM 分类从非结构数据中提取结构化信息 Getting started兼容性 支持的 LLM…

[NSSCTF]prize_p5

前言 之前就学过反序列化的字符串逃逸 但是没怎么做题 补一下窟窿 题目 <?phperror_reporting(0);class catalogue{public $class;public $data;public function __construct(){$this->class "error";$this->data "hacker";}public functi…

Midjourney之利用tile进行图像拼粘,壁纸和纹理生成无缝拼图

hello 小伙伴们&#xff0c;我是你们的老朋友——树下&#xff0c;今天分享Midjourney提示词常用参数——tile&#xff0c;这个参数的主要作用是用来生成平铺图案&#xff0c;话不多说&#xff0c;直接开始~ 如果你想要各种图案的壁纸或者需要一些图案参考去制作织物&#xff…

FSRCNN:加速超分辨率卷积神经网络,SRCNN的加速版

paper&#xff1a;https://arxiv.org/pdf/1608.00367 code: https://github.com/yjn870/FSRCNN-pytorch/tree/master 目录 1. 动机 2. 方法 3. 代码对比 4. 实验结果 1. 动机 作者此前提出的SRCNN证明了CNN在图像超分领域的有效性。然而&#xff0c;SRCNN计算效率较低&#…

235 基于matlab的时频盲源分离(TFBSS)算法

基于matlab的时频盲源分离&#xff08;TFBSS&#xff09;算法&#xff0c;TFBSS用空间频率分布来分离非平稳信号&#xff0c;可以分离具有不同时频分布的源信号&#xff0c;也能够分离具有相同谱密度但时频分布不同的高斯源。同时&#xff0c;该算法在时频域上局域化源信号能量…

Bytebase 2.16.0 - 支持 Oracle 和 SQL Server DML 变更的事前备份

&#x1f680; 新功能 支持 Oracle 和 SQL Server DML 变更的事前备份。 支持在 SQL 编辑器中显示存储过程和函数。 支持兼容 TDSQL 的 MySQL 和 PostgreSQL 版本。 支持把数据库密码存储在 AWS Secrets Manager 和 GCP Secret Manager。 支持通过 IAM 连接到 Google Clou…

职场不败的社交口才是什么行为

职场不败的社交口才是什么行为 职场不败的社交口才&#xff1a;塑造卓越人际关系的行为艺术 在职场中&#xff0c;社交口才是一项至关重要的能力。它不仅能够帮助我们建立良好的人际关系&#xff0c;更能在关键时刻为我们赢得信任、提升影响力&#xff0c;从而在职场竞争中立于…

Mac NTFS磁盘读写工具选择:Tuxera还是Paragon?

在Mac上使用NTFS磁盘时&#xff0c;选择一款合适的读写工具至关重要。Tuxera和Paragon作为两款备受推崇的Mac NTFS磁盘读写工具&#xff0c;都能够帮助用户轻松地实现NTFS格式的读写。那么&#xff0c;面对这两款功能强大的工具&#xff0c;我们应该如何选择呢&#xff1f;本文…

【每日刷题】Day26

【每日刷题】Day26 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. [NOIP2008]笨小猴_牛客题霸_牛客网 (nowcoder.com) 2. 添加逗号_牛客题霸_牛客网 (nowcoder.com) …

【计算机毕业设计】基于SSM++jsp的校园快递代取系统【源码+lw+部署文档+讲解】

目录 1 绪论 1.1 研究背景 1.2 目的和意义 1.3 论文结构安排 2 相关技术 2.1 SSM框架介绍 2.2 B/S结构介绍 2.3 Mysql数据库介绍 3 系统分析 3.1 系统可行性分析 3.1.1 技术可行性分析 3.1.2 经济可行性分析 3.1.3 运行可行性分析 3.2 系统性能分析 3.2.1 易用性指标 3.2.2 可…

HarmonyOS Next从入门到精通实战精品课

第一阶段&#xff1a;HarmonyOS Next星河版从入门到精通该阶段由HarmonyOS Next星河版本出发&#xff0c;介绍HarmonyOS Next版本应用开发基础概念&#xff0c;辅助学员快速上手新版本开发范式&#xff0c;共计42课时 第一天鸿蒙NEXT Mac版、Windows版【编辑器】和【模拟器】&a…