PL 和PS的高效交互是zynq 7000 soc开发的重中之重,我们常常需要将PL端的大量数
据实时送到PS端处理,或者将PS端处理结果实时送到PL端处理,常规我们会想到使用DMA
的方式来进行,但是各种协议非常麻烦,灵活性也比较差,本节课程讲解如何直接通过AXI总
线来读写PS端ddr的数据,这里面涉及到AXI4协议,vivado的FPGA调试等。
1 ZYNQ 的HP端口使用
zynq 7000 SOC 的HP口是 High-Performance Ports的缩写,如下图所示,一共有4
个HP口,HP口是AXI Slave设备,我们可以通过这4个HP接口实现高带宽的数据交互。
- 在vivado的界面中HP的配置如下图(HP0~HP3),这里面有使能控制,数据位宽选择,可选择32或64bit的位宽。
2)我们的实验启用HP0配置为64bit位宽,使用的时钟是150Mhz,HP的带宽是150Mhz
- 64bit,对于视频处理,ADC数据采集等应用都有足够的带宽。
- 如下图所示,配置完HP端口以后,zynq会多出一个AXI Slave端口,名称为S_AXI_HP0,
不过这些端口都是AXI3标准的,我们常用的是AXI4协议,这里添加1个AXI Interconnect
IP,用于协议转换(AXI3<->AXI4)
2 PL 端AXI Master
AXI4 相对复杂,但SOC开发者必须掌握,对于zynq的开发者,笔者建议能够在一些已
有的模板代码基础上修改。AXI协议的具体内容可参考Xilinx UG761 AXI Reference Guide。
在这里我们简单了解一下。
AXI4 所采用的是一种READY,VALID握手通信机制,即主从模块进行数据通信前,先根
据操作对各所用到的数据、地址通道进行握手。主要操作包括传输发送者A等到传输接受者B
的READY信号后,A将数据与VALID信号同时发送给B,这是一种典型的握手机制。
AXI 总线分为五个通道:
读地址通道,包含ARVALID, ARADDR, ARREADY信号;
写地址通道,包含AWVALID,AWADDR, AWREADY信号;
读数据通道,包含RVALID, RDATA, RREADY, RRESP信号;
写数据通道,包含WVALID, WDATA,WSTRB, WREADY信号;
写应答通道,包含BVALID, BRESP, BREADY信号;
系统通道,包含:ACLK,ARESETN信号;
其中ACLK为axi总线时钟,ARESETN是axi总线复位信号,低电平有效;读写数据与读
写地址类信号宽度都为32bit;READY与VALID是对应的通道握手信号;WSTRB信号为1的
bit 对应WDATA有效数据字节,WSTRB宽度是32bit/8=4bit;BRESP与RRESP分别为写回
应信号,读回应信号,宽度都为2bit,‘h0代表成功,其他为错误。
读操作顺序为主与从进行读地址通道握手并传输地址内容,然后在读数据通道握手并传输
所读内容以及读取操作的回应,时钟上升沿有效。如图所示:
写操作顺序为主与从进行写地址通道握手并传输地址内容,然后在写数据通道握手并传输
所读内容,最后再写回应通道握手,并传输写回应数据,时钟上升沿有效。如图所示:
在我们不擅长写FPGA的一些代码时我们往往要借鉴别人的代码或者使用IP core。在这里
笔者从github上找到一个AXI master的代码,地址是
https://github.com/aquaxis/IPCORE/tree/master/aq_axi_vdma。这个工程是一个自己写的
VDMA,里面包含了大量可参考的代码。笔者这里主要使用了aq_axi_master.v这个代码用于
AXI master 读写操作。借鉴别人代码有时会节省很多时间,但如果不能理解的去借鉴,出现问
题了很难解决。具体可以参考aq_axi_master.v代码,有部分修改。
module mem_test
#(
parameter MEM_DATA_BITS = 64,
parameter ADDR_BITS = 32
)
(
input rst, /*复位*/
input mem_clk, /*接口时钟*/
output reg rd_burst_req, /*读请求*/
output reg wr_burst_req, /*写请求*/
output reg[9:0] rd_burst_len, /*读数据长度*/
output reg[9:0] wr_burst_len, /*写数据长度*/
output reg[ADDR_BITS - 1:0] rd_burst_addr, /*读首地址*/
output reg[ADDR_BITS - 1:0] wr_burst_addr, /*写首地址*/
input rd_burst_data_valid, /*读出数据有效*/
input wr_burst_data_req, /*写数据信号*/
input[MEM_DATA_BITS - 1:0] rd_burst_data, /*读出的数据*/
output[MEM_DATA_BITS - 1:0] wr_burst_data, /*写入的数据*/
input rd_burst_finish, /*读完成*/
input wr_burst_finish, /*写完成*/
output reg error
);
parameter IDLE = 3'd0;
parameter MEM_READ = 3'd1;
parameter MEM_WRITE = 3'd2;
parameter BURST_LEN = 128;
(*mark_debug="true"*)reg[2:0] state;
(*mark_debug="true"*)reg[7:0] wr_cnt;
reg[MEM_DATA_BITS - 1:0] wr_burst_data_reg;
assign wr_burst_data = wr_burst_data_reg;
(*mark_debug="true"*)reg[7:0] rd_cnt;
reg[31:0] write_read_len;
//assign error = (state == MEM_READ) && rd_burst_data_valid && (rd_burst_data != {(MEM_DATA_BITS/8){rd_cnt}});
always@(posedge mem_clk or posedge rst)
begin
if(rst)
error <= 1'b0;
else if(state == MEM_READ && rd_burst_data_valid && rd_burst_data != {(MEM_DATA_BITS/8){rd_cnt}})
error <= 1'b1;
end
always@(posedge mem_clk or posedge rst)
begin
if(rst)
begin
wr_burst_data_reg <= {MEM_DATA_BITS{1'b0}};
wr_cnt <= 8'd0;
end
else if(state == MEM_WRITE)
begin
if(wr_burst_data_req)
begin
wr_burst_data_reg <= {(MEM_DATA_BITS/8){wr_cnt}};
wr_cnt <= wr_cnt + 8'd1;
end
else if(wr_burst_finish)
wr_cnt <= 8'd0;
end
end
always@(posedge mem_clk or posedge rst)
begin
if(rst)
begin
rd_cnt <= 8'd0;
end
else if(state == MEM_READ)
begin
if(rd_burst_data_valid)
begin
rd_cnt <= rd_cnt + 8'd1;
end
else if(rd_burst_finish)
rd_cnt <= 8'd0;
end
else
rd_cnt <= 8'd0;
end
always@(posedge mem_clk or posedge rst)
begin
if(rst)
begin
state <= IDLE;
wr_burst_req <= 1'b0;
rd_burst_req <= 1'b0;
rd_burst_len <= BURST_LEN;
wr_burst_len <= BURST_LEN;
rd_burst_addr <= 0;
wr_burst_addr <= 0;
write_read_len <= 32'd0;
end
else
begin
case(state)
IDLE:
begin
state <= MEM_WRITE;
wr_burst_req <= 1'b1;
wr_burst_len <= BURST_LEN;
wr_burst_addr <='h2000000;
write_read_len <= 32'd0;
end
MEM_WRITE:
begin
if(wr_burst_finish)
begin
state <= MEM_READ;
wr_burst_req <= 1'b0;
rd_burst_req <= 1'b1;
rd_burst_len <= BURST_LEN;
rd_burst_addr <= wr_burst_addr;
write_read_len <= write_read_len + BURST_LEN;
end
end
MEM_READ:
begin
if(rd_burst_finish)
begin
if(write_read_len == 32'h2000000)
begin
rd_burst_req <= 1'b0;
state <= IDLE;
end
else
begin
state <= MEM_WRITE;
wr_burst_req <= 1'b1;
wr_burst_len <= BURST_LEN;
rd_burst_req <= 1'b0;
wr_burst_addr <= wr_burst_addr + BURST_LEN;
end
end
end
default:
state <= IDLE;
endcase
end
end
endmodule
module aq_axi_master(
// Reset, Clock
input ARESETN,
input ACLK,
// Master Write Address
output [0:0] M_AXI_AWID,
output [31:0] M_AXI_AWADDR,
output [7:0] M_AXI_AWLEN, // Burst Length: 0-255
output [2:0] M_AXI_AWSIZE, // Burst Size: Fixed 2'b011
output [1:0] M_AXI_AWBURST, // Burst Type: Fixed 2'b01(Incremental Burst)
output M_AXI_AWLOCK, // Lock: Fixed 2'b00
output [3:0] M_AXI_AWCACHE, // Cache: Fiex 2'b0011
output [2:0] M_AXI_AWPROT, // Protect: Fixed 2'b000
output [3:0] M_AXI_AWQOS, // QoS: Fixed 2'b0000
output [0:0] M_AXI_AWUSER, // User: Fixed 32'd0
output M_AXI_AWVALID,
input M_AXI_AWREADY,
// Master Write Data
output [63:0] M_AXI_WDATA,
output [7:0] M_AXI_WSTRB,
output M_AXI_WLAST,
output [0:0] M_AXI_WUSER,
output M_AXI_WVALID,
input M_AXI_WREADY,
// Master Write Response
input [0:0] M_AXI_BID,
input [1:0] M_AXI_BRESP,
input [0:0] M_AXI_BUSER,
input M_AXI_BVALID,
output M_AXI_BREADY,
// Master Read Address
output [0:0] M_AXI_ARID,
output [31:0] M_AXI_ARADDR,
output [7:0] M_AXI_ARLEN,
output [2:0] M_AXI_ARSIZE,
output [1:0] M_AXI_ARBURST,
output [1:0] M_AXI_ARLOCK,
output [3:0] M_AXI_ARCACHE,
output [2:0] M_AXI_ARPROT,
output [3:0] M_AXI_ARQOS,
output [0:0] M_AXI_ARUSER,
output M_AXI_ARVALID,
input M_AXI_ARREADY,
// Master Read Data
input [0:0] M_AXI_RID,
input [63:0] M_AXI_RDATA,
input [1:0] M_AXI_RRESP,
input M_AXI_RLAST,
input [0:0] M_AXI_RUSER,
input M_AXI_RVALID,
output M_AXI_RREADY,
// Local Bus
input MASTER_RST,
input WR_START,
input [31:0] WR_ADRS,
input [31:0] WR_LEN,
output WR_READY,
output WR_FIFO_RE,
input WR_FIFO_EMPTY,
input WR_FIFO_AEMPTY,
input [63:0] WR_FIFO_DATA,
output WR_DONE,
input RD_START,
input [31:0] RD_ADRS,
input [31:0] RD_LEN,
output RD_READY,
output RD_FIFO_WE,
input RD_FIFO_FULL,
input RD_FIFO_AFULL,
output [63:0] RD_FIFO_DATA,
output RD_DONE,
output [31:0] DEBUG
);
localparam S_WR_IDLE = 3'd0;
localparam S_WA_WAIT = 3'd1;
localparam S_WA_START = 3'd2;
localparam S_WD_WAIT = 3'd3;
localparam S_WD_PROC = 3'd4;
localparam S_WR_WAIT = 3'd5;
localparam S_WR_DONE = 3'd6;
reg [2:0] wr_state;
reg [31:0] reg_wr_adrs;
reg [31:0] reg_wr_len;
reg reg_awvalid, reg_wvalid, reg_w_last;
reg [7:0] reg_w_len;
reg [7:0] reg_w_stb;
reg [1:0] reg_wr_status;
reg [3:0] reg_w_count, reg_r_count;
reg [7:0] rd_chkdata, wr_chkdata;
reg [1:0] resp;
reg rd_first_data;
reg rd_fifo_enable;
reg[31:0] rd_fifo_cnt;
assign WR_DONE = (wr_state == S_WR_DONE);
assign WR_FIFO_RE = rd_first_data | (reg_wvalid & ~WR_FIFO_EMPTY & M_AXI_WREADY & rd_fifo_enable);
//assign WR_FIFO_RE = reg_wvalid & ~WR_FIFO_EMPTY & M_AXI_WREADY;
always @(posedge ACLK or negedge ARESETN)
begin
if(!ARESETN)
rd_fifo_cnt <= 32'd0;
else if(WR_FIFO_RE)
rd_fifo_cnt <= rd_fifo_cnt + 32'd1;
else if(wr_state == S_WR_IDLE)
rd_fifo_cnt <= 32'd0;
end
always @(posedge ACLK or negedge ARESETN)
begin
if(!ARESETN)
rd_fifo_enable <= 1'b0;
else if(wr_state == S_WR_IDLE && WR_START)
rd_fifo_enable <= 1'b1;
else if(WR_FIFO_RE && (rd_fifo_cnt == RD_LEN[31:3] - 32'd1) )
rd_fifo_enable <= 1'b0;
end
// Write State
always @(posedge ACLK or negedge ARESETN) begin
if(!ARESETN) begin
wr_state <= S_WR_IDLE;
reg_wr_adrs[31:0] <= 32'd0;
reg_wr_len[31:0] <= 32'd0;
reg_awvalid <= 1'b0;
reg_wvalid <= 1'b0;
reg_w_last <= 1'b0;
reg_w_len[7:0] <= 8'd0;
reg_w_stb[7:0] <= 8'd0;
reg_wr_status[1:0] <= 2'd0;
reg_w_count[3:0] <= 4'd0;
reg_r_count[3:0] <= 4'd0;
wr_chkdata <= 8'd0;
rd_chkdata <= 8'd0;
resp <= 2'd0;
rd_first_data <= 1'b0;
end else begin
if(MASTER_RST) begin
wr_state <= S_WR_IDLE;
end else begin
case(wr_state)
S_WR_IDLE: begin
if(WR_START) begin
wr_state <= S_WA_WAIT;
reg_wr_adrs[31:0] <= WR_ADRS[31:0];
reg_wr_len[31:0] <= WR_LEN[31:0] -32'd1;
rd_first_data <= 1'b1;
end
reg_awvalid <= 1'b0;
reg_wvalid <= 1'b0;
reg_w_last <= 1'b0;
reg_w_len[7:0] <= 8'd0;
reg_w_stb[7:0] <= 8'd0;
reg_wr_status[1:0] <= 2'd0;
end
S_WA_WAIT: begin
if(!WR_FIFO_AEMPTY | (reg_wr_len[31:11] == 21'd0)) begin
wr_state <= S_WA_START;
end
rd_first_data <= 1'b0;
end
S_WA_START: begin
wr_state <= S_WD_WAIT;
reg_awvalid <= 1'b1;
reg_wr_len[31:11] <= reg_wr_len[31:11] - 21'd1;
if(reg_wr_len[31:11] != 21'd0) begin
reg_w_len[7:0] <= 8'hFF;
reg_w_last <= 1'b0;
reg_w_stb[7:0] <= 8'hFF;
end else begin
reg_w_len[7:0] <= reg_wr_len[10:3];
reg_w_last <= 1'b1;
reg_w_stb[7:0] <= 8'hFF;
/*
case(reg_wr_len[2:0]) begin
case 3'd0: reg_w_stb[7:0] <= 8'b0000_0000;
case 3'd1: reg_w_stb[7:0] <= 8'b0000_0001;
case 3'd2: reg_w_stb[7:0] <= 8'b0000_0011;
case 3'd3: reg_w_stb[7:0] <= 8'b0000_0111;
case 3'd4: reg_w_stb[7:0] <= 8'b0000_1111;
case 3'd5: reg_w_stb[7:0] <= 8'b0001_1111;
case 3'd6: reg_w_stb[7:0] <= 8'b0011_1111;
case 3'd7: reg_w_stb[7:0] <= 8'b0111_1111;
default: reg_w_stb[7:0] <= 8'b1111_1111;
endcase
*/
end
end
S_WD_WAIT: begin
if(M_AXI_AWREADY) begin
wr_state <= S_WD_PROC;
reg_awvalid <= 1'b0;
reg_wvalid <= 1'b1;
end
end
S_WD_PROC: begin
if(M_AXI_WREADY & ~WR_FIFO_EMPTY) begin
if(reg_w_len[7:0] == 8'd0) begin
wr_state <= S_WR_WAIT;
reg_wvalid <= 1'b0;
reg_w_stb[7:0] <= 8'h00;
end else begin
reg_w_len[7:0] <= reg_w_len[7:0] -8'd1;
end
end
end
S_WR_WAIT: begin
if(M_AXI_BVALID) begin
reg_wr_status[1:0] <= reg_wr_status[1:0] | M_AXI_BRESP[1:0];
if(reg_w_last) begin
wr_state <= S_WR_DONE;
end else begin
wr_state <= S_WA_WAIT;
reg_wr_adrs[31:0] <= reg_wr_adrs[31:0] + 32'd2048;
end
end
end
S_WR_DONE: begin
wr_state <= S_WR_IDLE;
end
default: begin
wr_state <= S_WR_IDLE;
end
endcase
/*
if(WR_FIFO_RE) begin
reg_w_count[3:0] <= reg_w_count[3:0] + 4'd1;
end
if(RD_FIFO_WE)begin
reg_r_count[3:0] <= reg_r_count[3:0] + 4'd1;
end
if(M_AXI_AWREADY & M_AXI_AWVALID) begin
wr_chkdata <= 8'hEE;
end else if(M_AXI_WSTRB[7] & M_AXI_WVALID) begin
wr_chkdata <= WR_FIFO_DATA[63:56];
end
if(M_AXI_AWREADY & M_AXI_AWVALID) begin
rd_chkdata <= 8'hDD;
end else if(M_AXI_WSTRB[7] & M_AXI_WREADY) begin
rd_chkdata <= WR_FIFO_DATA[63:56];
end
if(M_AXI_BVALID & M_AXI_BREADY) begin
resp <= M_AXI_BRESP;
end
*/
end
end
end
assign M_AXI_AWID = 1'b0;
assign M_AXI_AWADDR[31:0] = reg_wr_adrs[31:0];
assign M_AXI_AWLEN[7:0] = reg_w_len[7:0];
assign M_AXI_AWSIZE[2:0] = 2'b011;
assign M_AXI_AWBURST[1:0] = 2'b01;
assign M_AXI_AWLOCK = 1'b0;
assign M_AXI_AWCACHE[3:0] = 4'b0011;
assign M_AXI_AWPROT[2:0] = 3'b000;
assign M_AXI_AWQOS[3:0] = 4'b0000;
assign M_AXI_AWUSER[0] = 1'b1;
assign M_AXI_AWVALID = reg_awvalid;
assign M_AXI_WDATA[63:0] = WR_FIFO_DATA[63:0];
// assign M_AXI_WSTRB[7:0] = (reg_w_len[7:0] == 8'd0)?reg_w_stb[7:0]:8'hFF;
// assign M_AXI_WSTRB[7:0] = (wr_state == S_WD_PROC)?8'hFF:8'h00;
assign M_AXI_WSTRB[7:0] = (reg_wvalid & ~WR_FIFO_EMPTY)?8'hFF:8'h00;
assign M_AXI_WLAST = (reg_w_len[7:0] == 8'd0)?1'b1:1'b0;
assign M_AXI_WUSER = 1;
assign M_AXI_WVALID = reg_wvalid & ~WR_FIFO_EMPTY;
// assign M_AXI_WVALID = (wr_state == S_WD_PROC)?1'b1:1'b0;
assign M_AXI_BREADY = M_AXI_BVALID;
assign WR_READY = (wr_state == S_WR_IDLE)?1'b1:1'b0;
// assign WR_FIFO_RE = (wr_state == S_WD_PROC)?M_AXI_WREADY:1'b0;
localparam S_RD_IDLE = 3'd0;
localparam S_RA_WAIT = 3'd1;
localparam S_RA_START = 3'd2;
localparam S_RD_WAIT = 3'd3;
localparam S_RD_PROC = 3'd4;
localparam S_RD_DONE = 3'd5;
reg [2:0] rd_state;
reg [31:0] reg_rd_adrs;
reg [31:0] reg_rd_len;
reg reg_arvalid, reg_r_last;
reg [7:0] reg_r_len;
assign RD_DONE = (rd_state == S_RD_DONE) ;
// Read State
always @(posedge ACLK or negedge ARESETN) begin
if(!ARESETN) begin
rd_state <= S_RD_IDLE;
reg_rd_adrs[31:0] <= 32'd0;
reg_rd_len[31:0] <= 32'd0;
reg_arvalid <= 1'b0;
reg_r_len[7:0] <= 8'd0;
end else begin
case(rd_state)
S_RD_IDLE: begin
if(RD_START) begin
rd_state <= S_RA_WAIT;
reg_rd_adrs[31:0] <= RD_ADRS[31:0];
reg_rd_len[31:0] <= RD_LEN[31:0] -32'd1;
end
reg_arvalid <= 1'b0;
reg_r_len[7:0] <= 8'd0;
end
S_RA_WAIT: begin
if(~RD_FIFO_AFULL) begin
rd_state <= S_RA_START;
end
end
S_RA_START: begin
rd_state <= S_RD_WAIT;
reg_arvalid <= 1'b1;
reg_rd_len[31:11] <= reg_rd_len[31:11] -21'd1;
if(reg_rd_len[31:11] != 21'd0) begin
reg_r_last <= 1'b0;
reg_r_len[7:0] <= 8'd255;
end else begin
reg_r_last <= 1'b1;
reg_r_len[7:0] <= reg_rd_len[10:3];
end
end
S_RD_WAIT: begin
if(M_AXI_ARREADY) begin
rd_state <= S_RD_PROC;
reg_arvalid <= 1'b0;
end
end
S_RD_PROC: begin
if(M_AXI_RVALID) begin
if(M_AXI_RLAST) begin
if(reg_r_last) begin
rd_state <= S_RD_DONE;
end else begin
rd_state <= S_RA_WAIT;
reg_rd_adrs[31:0] <= reg_rd_adrs[31:0] + 32'd2048;
end
end else begin
reg_r_len[7:0] <= reg_r_len[7:0] -8'd1;
end
end
end
S_RD_DONE:begin
rd_state <= S_RD_IDLE;
end
endcase
end
end
// Master Read Address
assign M_AXI_ARID = 1'b0;
assign M_AXI_ARADDR[31:0] = reg_rd_adrs[31:0];
assign M_AXI_ARLEN[7:0] = reg_r_len[7:0];
assign M_AXI_ARSIZE[2:0] = 3'b011;
assign M_AXI_ARBURST[1:0] = 2'b01;
assign M_AXI_ARLOCK = 1'b0;
assign M_AXI_ARCACHE[3:0] = 4'b0011;
assign M_AXI_ARPROT[2:0] = 3'b000;
assign M_AXI_ARQOS[3:0] = 4'b0000;
assign M_AXI_ARUSER[0] = 1'b1;
assign M_AXI_ARVALID = reg_arvalid;
assign M_AXI_RREADY = M_AXI_RVALID & ~RD_FIFO_FULL;
assign RD_READY = (rd_state == S_RD_IDLE)?1'b1:1'b0;
assign RD_FIFO_WE = M_AXI_RVALID;
assign RD_FIFO_DATA[63:0] = M_AXI_RDATA[63:0];
assign DEBUG[31:0] = {reg_wr_len[31:8],
1'd0, wr_state[2:0], 1'd0, rd_state[2:0]};
endmodule
module top(
inout [14:0]DDR_addr,
inout [2:0]DDR_ba,
inout DDR_cas_n,
inout DDR_ck_n,
inout DDR_ck_p,
inout DDR_cke,
inout DDR_cs_n,
inout [3:0]DDR_dm,
inout [31:0]DDR_dq,
inout [3:0]DDR_dqs_n,
inout [3:0]DDR_dqs_p,
inout DDR_odt,
inout DDR_ras_n,
inout DDR_reset_n,
inout DDR_we_n,
inout FIXED_IO_ddr_vrn,
inout FIXED_IO_ddr_vrp,
inout [53:0]FIXED_IO_mio,
inout FIXED_IO_ps_clk,
inout FIXED_IO_ps_porb,
inout FIXED_IO_ps_srstb,
output error
);
wire rst_n;
wire M_AXI_ACLK;
// Master Write Address
wire [0:0] M_AXI_AWID;
wire [31:0] M_AXI_AWADDR;
wire [7:0] M_AXI_AWLEN; // Burst Length: 0-255
wire [2:0] M_AXI_AWSIZE; // Burst Size: Fixed 2'b011
wire [1:0] M_AXI_AWBURST; // Burst Type: Fixed 2'b01(Incremental Burst)
wire M_AXI_AWLOCK; // Lock: Fixed 2'b00
wire [3:0] M_AXI_AWCACHE; // Cache: Fiex 2'b0011
wire [2:0] M_AXI_AWPROT; // Protect: Fixed 2'b000
wire [3:0] M_AXI_AWQOS; // QoS: Fixed 2'b0000
wire [0:0] M_AXI_AWUSER; // User: Fixed 32'd0
wire M_AXI_AWVALID;
wire M_AXI_AWREADY;
// Master Write Data
wire [63:0] M_AXI_WDATA;
wire [7:0] M_AXI_WSTRB;
wire M_AXI_WLAST;
wire [0:0] M_AXI_WUSER;
wire M_AXI_WVALID;
wire M_AXI_WREADY;
// Master Write Response
wire [0:0] M_AXI_BID;
wire [1:0] M_AXI_BRESP;
wire [0:0] M_AXI_BUSER;
wire M_AXI_BVALID;
wire M_AXI_BREADY;
// Master Read Address
wire [0:0] M_AXI_ARID;
wire [31:0] M_AXI_ARADDR;
wire [7:0] M_AXI_ARLEN;
wire [2:0] M_AXI_ARSIZE;
wire [1:0] M_AXI_ARBURST;
wire [1:0] M_AXI_ARLOCK;
wire [3:0] M_AXI_ARCACHE;
wire [2:0] M_AXI_ARPROT;
wire [3:0] M_AXI_ARQOS;
wire [0:0] M_AXI_ARUSER;
wire M_AXI_ARVALID;
wire M_AXI_ARREADY;
// Master Read Data
wire [0:0] M_AXI_RID;
wire [63:0] M_AXI_RDATA;
wire [1:0] M_AXI_RRESP;
wire M_AXI_RLAST;
wire [0:0] M_AXI_RUSER;
wire M_AXI_RVALID;
wire M_AXI_RREADY;
(*mark_debug="true"*)wire wr_burst_data_req;
(*mark_debug="true"*)wire wr_burst_finish;
(*mark_debug="true"*)wire rd_burst_finish;
(*mark_debug="true"*)wire rd_burst_req;
(*mark_debug="true"*)wire wr_burst_req;
(*mark_debug="true"*)wire[9:0] rd_burst_len;
(*mark_debug="true"*)wire[9:0] wr_burst_len;
(*mark_debug="true"*)wire[31:0] rd_burst_addr;
(*mark_debug="true"*)wire[31:0] wr_burst_addr;
(*mark_debug="true"*)wire rd_burst_data_valid;
(*mark_debug="true"*)wire[63 : 0] rd_burst_data;
(*mark_debug="true"*)wire[63 : 0] wr_burst_data;
mem_test
#(
.MEM_DATA_BITS(64),
.ADDR_BITS(27)
)
mem_test_m0
(
.rst(~rst_n),
.mem_clk(M_AXI_ACLK),
.rd_burst_req(rd_burst_req),
.wr_burst_req(wr_burst_req),
.rd_burst_len(rd_burst_len),
.wr_burst_len(wr_burst_len),
.rd_burst_addr(rd_burst_addr),
.wr_burst_addr(wr_burst_addr),
.rd_burst_data_valid(rd_burst_data_valid),
.wr_burst_data_req(wr_burst_data_req),
.rd_burst_data(rd_burst_data),
.wr_burst_data(wr_burst_data),
.rd_burst_finish(rd_burst_finish),
.wr_burst_finish(wr_burst_finish),
.error(error)
);
aq_axi_master u_aq_axi_master
(
.ARESETN(rst_n),
.ACLK(M_AXI_ACLK),
.M_AXI_AWID(M_AXI_AWID),
.M_AXI_AWADDR(M_AXI_AWADDR),
.M_AXI_AWLEN(M_AXI_AWLEN),
.M_AXI_AWSIZE(M_AXI_AWSIZE),
.M_AXI_AWBURST(M_AXI_AWBURST),
.M_AXI_AWLOCK(M_AXI_AWLOCK),
.M_AXI_AWCACHE(M_AXI_AWCACHE),
.M_AXI_AWPROT(M_AXI_AWPROT),
.M_AXI_AWQOS(M_AXI_AWQOS),
.M_AXI_AWUSER(M_AXI_AWUSER),
.M_AXI_AWVALID(M_AXI_AWVALID),
.M_AXI_AWREADY(M_AXI_AWREADY),
.M_AXI_WDATA(M_AXI_WDATA),
.M_AXI_WSTRB(M_AXI_WSTRB),
.M_AXI_WLAST(M_AXI_WLAST),
.M_AXI_WUSER(M_AXI_WUSER),
.M_AXI_WVALID(M_AXI_WVALID),
.M_AXI_WREADY(M_AXI_WREADY),
.M_AXI_BID(M_AXI_BID),
.M_AXI_BRESP(M_AXI_BRESP),
.M_AXI_BUSER(M_AXI_BUSER),
.M_AXI_BVALID(M_AXI_BVALID),
.M_AXI_BREADY(M_AXI_BREADY),
.M_AXI_ARID(M_AXI_ARID),
.M_AXI_ARADDR(M_AXI_ARADDR),
.M_AXI_ARLEN(M_AXI_ARLEN),
.M_AXI_ARSIZE(M_AXI_ARSIZE),
.M_AXI_ARBURST(M_AXI_ARBURST),
.M_AXI_ARLOCK(M_AXI_ARLOCK),
.M_AXI_ARCACHE(M_AXI_ARCACHE),
.M_AXI_ARPROT(M_AXI_ARPROT),
.M_AXI_ARQOS(M_AXI_ARQOS),
.M_AXI_ARUSER(M_AXI_ARUSER),
.M_AXI_ARVALID(M_AXI_ARVALID),
.M_AXI_ARREADY(M_AXI_ARREADY),
.M_AXI_RID(M_AXI_RID),
.M_AXI_RDATA(M_AXI_RDATA),
.M_AXI_RRESP(M_AXI_RRESP),
.M_AXI_RLAST(M_AXI_RLAST),
.M_AXI_RUSER(M_AXI_RUSER),
.M_AXI_RVALID(M_AXI_RVALID),
.M_AXI_RREADY(M_AXI_RREADY),
.MASTER_RST(~rst_n),
.WR_START(wr_burst_req),
.WR_ADRS({wr_burst_addr[28:0],3'd0}),
.WR_LEN({wr_burst_len,3'd0}),
.WR_READY(),
.WR_FIFO_RE(wr_burst_data_req),
.WR_FIFO_EMPTY(1'b0),
.WR_FIFO_AEMPTY(1'b0),
.WR_FIFO_DATA(wr_burst_data),
.WR_DONE(wr_burst_finish),
.RD_START(rd_burst_req),
.RD_ADRS({rd_burst_addr[28:0],3'd0}),
.RD_LEN({rd_burst_len,3'd0}),
.RD_READY(),
.RD_FIFO_WE(rd_burst_data_valid),
.RD_FIFO_FULL(1'b0),
.RD_FIFO_AFULL(1'b0),
.RD_FIFO_DATA(rd_burst_data),
.RD_DONE(rd_burst_finish),
.DEBUG()
);
hdmi_out_wrapper ps_block
(
.DDR_addr(DDR_addr),
.DDR_ba(DDR_ba),
.DDR_cas_n(DDR_cas_n),
.DDR_ck_n(DDR_ck_n),
.DDR_ck_p(DDR_ck_p),
.DDR_cke(DDR_cke),
.DDR_cs_n(DDR_cs_n),
.DDR_dm(DDR_dm),
.DDR_dq(DDR_dq),
.DDR_dqs_n(DDR_dqs_n),
.DDR_dqs_p(DDR_dqs_p),
.DDR_odt(DDR_odt),
.DDR_ras_n(DDR_ras_n),
.DDR_reset_n(DDR_reset_n),
.DDR_we_n(DDR_we_n),
.FIXED_IO_ddr_vrn(FIXED_IO_ddr_vrn),
.FIXED_IO_ddr_vrp(FIXED_IO_ddr_vrp),
.FIXED_IO_mio(FIXED_IO_mio),
.FIXED_IO_ps_clk(FIXED_IO_ps_clk),
.FIXED_IO_ps_porb(FIXED_IO_ps_porb),
.FIXED_IO_ps_srstb(FIXED_IO_ps_srstb),
.S00_AXI_araddr (M_AXI_ARADDR ),
.S00_AXI_arburst (M_AXI_ARBURST ),
.S00_AXI_arcache (M_AXI_ARCACHE ),
.S00_AXI_arid (M_AXI_ARID ),
.S00_AXI_arlen (M_AXI_ARLEN ),
.S00_AXI_arlock (M_AXI_ARLOCK ),
.S00_AXI_arprot (M_AXI_ARPROT ),
.S00_AXI_arqos (M_AXI_ARQOS ),
.S00_AXI_arready (M_AXI_ARREADY ),
//.S00_AXI_arregion (4'b0000 ),
.S00_AXI_arsize (M_AXI_ARSIZE ),
.S00_AXI_arvalid (M_AXI_ARVALID ),
.S00_AXI_rdata (M_AXI_RDATA ),
.S00_AXI_rid (M_AXI_RID ),
.S00_AXI_rlast (M_AXI_RLAST ),
.S00_AXI_rready (M_AXI_RREADY ),
.S00_AXI_rresp (M_AXI_RRESP ),
.S00_AXI_rvalid (M_AXI_RVALID ),
.S00_AXI_awaddr (M_AXI_AWADDR ),
.S00_AXI_awburst (M_AXI_AWBURST ),
.S00_AXI_awcache (M_AXI_AWCACHE ),
.S00_AXI_awid (M_AXI_AWID ),
.S00_AXI_awlen (M_AXI_AWLEN ),
.S00_AXI_awlock (M_AXI_AWLOCK ),
.S00_AXI_awprot (M_AXI_AWPROT ),
.S00_AXI_awqos (M_AXI_AWQOS ),
.S00_AXI_awready (M_AXI_AWREADY ),
//.S00_AXI_awregion (4'b0000 ),
.S00_AXI_awsize (M_AXI_AWSIZE ),
.S00_AXI_awvalid (M_AXI_AWVALID ),
.S00_AXI_bid (M_AXI_BID ),
.S00_AXI_bready (M_AXI_BREADY ),
.S00_AXI_bresp (M_AXI_BRESP ),
.S00_AXI_bvalid (M_AXI_BVALID ),
.S00_AXI_wdata (M_AXI_WDATA ),
.S00_AXI_wlast (M_AXI_WLAST ),
.S00_AXI_wready (M_AXI_WREADY ),
.S00_AXI_wstrb (M_AXI_WSTRB ),
.S00_AXI_wvalid (M_AXI_WVALID ),
.peripheral_aresetn(rst_n),
.FCLK_CLK0(M_AXI_ACLK),
.axi_hp_clk(M_AXI_ACLK)
);
endmodule
3下板测试
读写分析