YOLOv8改进项目汇总-超全改进-ultralyticsPro介绍:订阅了《芒果YOLOv8原创改进专栏》的读者免费赠送,包括很多稀有改进

news2025/1/14 1:08:14

🔥🔥🔥专注于YOLOv8改进,NEW - YOLOv8 🚀 in PyTorch >, Support to improve Backbone, Neck, Head, Loss, IoU, LA, NMS and other modules🚀 Makes YOLOv8 improvements easy again

芒果出品

YOLOv8改进项目汇总-超全改进-ultralyticsPro项目
订阅了《芒果YOLOv8原创改进专栏》的读者免费赠送!!!

🚀该项目持续更新:内容包括:改进 新的标签分配策略、检测头Head、损失函数Loss、主干Backbone、Neck部分、分类损失函数、NMS改进、写作技巧、性能指标技巧

包括很多稀有改进

🌟 全新的YOLOv8改进项目ultralyticsPro来袭,最新改进点更新🚀2024

YOLOv8改进项目地址:https://github.com/iscyy/ultralyticsPro

bilibili视频教程链接:bilibili: https://space.bilibili.com/1532780812 (可 bilibili 私信)

在这里插入图片描述


改进YOLOv8项目

使用说明

该项目基于 官方的YOLOv8项目v8.1版本,使用稳定可靠,环境已配好,适合零基础小白以上的用户使用

  1. 🍈该《YOLOv8改进项目ultralyticsPro》基于官方ultralytics项目YOLOv8-最新稳定版本,兼容所有官方的更新
  2. 🍉订阅该《YOLOv8改进项目ultralyticsPro》即可获取本项目里面改进点对应的《核心代码模块文件》,加入《改进后的核心代码文件》就可以直接运行。保证本项目中已有的改进点都能正常运行实验
  3. 🥭目前该项目《ultralyticsPro》有部分改进为免费使用的,用户可以直接试用
  4. 🍊重点:支持该项目相关改进的答疑服务
  5. 🍌在此基础上新建了一个《芒果YOLOv8项目改进交流群》便于项目改进交流和答疑,并在群里同步更新新的内容, 之前在CSDN订阅过·YOLOv8深度改进专栏·和·剑指YOLOv8改进专栏·可以免费使用该项目
  6. 🌰新增以《视频教程》辅助来说明应该怎么改
  7. 🌟多任务改进篇:支持OBB旋转检测、姿态估计、图像分割任务、图像分类等各类改进
  8. 🎈该项目为YOLOv8改进项目, 目前为预售阶段,欢迎订阅,可以加芒果QQ:2434798737,或者点击链接 通过 👉bilibili哔哩哔哩 私信, 或者👉 CSDN: 博主 私信)进行订阅,订阅后,实时获取最新的已有的《改进的核心模块代码文件》
  9. 🏆已经订阅了的用户 可以进《ultralyticsPro改进YOLOv8交流群》 同时获取本项目剩下对应的《核心代码模块文件》
  10. 🏅️用户可以添加博主的联系方式 QQ:2434798737 ⭐⭐⭐(或者点击链接 通过 👉bilibili哔哩哔哩 私信, 或者👉 CSDN: 博主 私信)进行订阅
  11. 🚀该项目持续更新:内容包括:改进 新的标签分配策略、检测头Head、损失函数Loss、主干Backbone、Neck部分、分类损失函数、NMS改进、写作技巧、性能指标技巧

本项目持续维护,持续更新原创内容


项目相关链接

2.1 演示视频教程
  1. bilibili视频教程链接:bilibili: https://space.bilibili.com/1532780812 (可 bilibili 私信)
2.2 演示文档教程
  1. CSDN教程链接:CSDN: https://yoloair.blog.csdn.net/ (可 CSDN 私信)
  2. 博主 QQ 联系方式:2434798737(需要咨询/订阅该改进项目的用户可以添加)

订阅说明

目前为订阅制 ,现在内测阶段:价格比较优惠 ⭐⭐⭐ !!!⭐⭐⭐, 后续恢复为原价
(需要订阅的联系QQ:2434798737)

YOLOv8改进 - 目录(2024.03最新版本)

主项目在 UltralyticsPro 项目中,点击链接即可
GitHub - iscyy/ultralyticsPro: 🔥🔥🔥专注于改进YOLOv8模型,NEW - YOLOv8 🚀 RT-DETR 🥇 in PyTorch >, Support to improve backbone, neck, head, loss, IoU, NMS and other modules🚀


4.1. IoU损失函数改进

项目内容链接👉:ultralyticsPro/YOLOv8-Loss
说明:
YOLOv8损失函数Loss改进(ultralyticsPro)


4.2 检测头Head改进

项目内容链接👉:ultralyticsPro/YOLOv8-Head
说明:
YOLOv8检测头Head改进(ultralyticsPro)


4.3 主干网络改进Backbone

项目内容链接👉:ultralyticsPro/YOLOv8-Backbone
说明:
YOLOv8主干Backbone改进(ultralyticsPro)


4.4 特征融合网络改进Neck

项目内容链接👉:ultralyticsPro/YOLOv8-Neck
说明:
YOLOv8特征融合Neck改进(ultralyticsPro)

4.5 金字塔结构改进Neck

这部分比较简单,直接更新到ultralyticsPro项目中

4.6 标签分配策略改进

包含超多种 **自研结构,**以下改进 博主在 **公开小目标数据集VisDrone **上进行了实验并取得了 不错的效果


YOLOv8改进
《标签分配策略》
标签分配策略
核心配置文件yaml👇


**SimOTA **动态标签分配策略YOLOv8-SimOTA.yaml全网首发,独家
**YOLOv7 **标签分配策略YOLOv8-v7LA.yaml全网首发,独家
**YOLOv5 **标签分配策略YOLOv8-v5LA.yaml全网首发,独家
ATSS 动态标签分配策略YOLOv8-ATSS.yaml23年原创
NanoDet 动态标签分配策略YOLOv8-NanoDet.yaml全网首发,独家,原创
WDLA 动态标签分配策略YOLOv8-WDLA.yaml全网首发,独家,二次原创
**ATSS+TAL协同训练机制 **标签分配策略YOLOv8-ATSS_TAL.yaml全网首发,独家,二次原创
RFLA 动态标签分配策略YOLOv8-RFLA.yaml进行二次原创
Generalized Focal Loss 标签分配策略YOLOv8-GFL.yaml全网首发,独家
RTMDet 动态标签分配策略YOLOv8-RTMLA.yaml全网首发,独家
AlignOTA 动态标签分配策略YOLOv8-AlignOTA.yaml全网首发,独家
DynamicATSS 动态标签分配策略YOLOv8-DynamicATSS.yaml全网首发,独家
DW 双加权 动态标签分配策略YOLOv8-DW.yaml全网首发,独家
MuSu相互监督 标签分配策略YOLOv8-MuSu.yaml全网首发,独家


持续更新最新原创 标签分配策略 结构同步在该项目/文档中更新

更多 硬核 **标签分配策略 **改进 持续更新中…

说明:
可能有同学好奇,为什么是yaml的形式 来改进标签分配策略LA?

这是博主提出的一种比较新颖的改进方式关于使用不同《标签分配策略》训练
现在集成了直接在yaml网络配置文件中修改不同**《标签分配策略》**进行训练,只需要将 **LA:SimOTA **字段 改为对应的 标签分配策略名称, 即可 使用 ATSS动态标签分配策略 进行训练
比如 添加
LA:ATSS
或者
LA:SimOTA

即表示使用** SimOTA标签分配策略 **训练,非常方便,是目前第一个项目采用这种方式,很方便,且很容易记录实验情况。代码展示可展开,详情👇

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model. More improvement points for YOLOv8, please see https://github.com/iscyy/ultralyticsPro

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

loss: 'CIoU' # 举例,如果使用XIoU损失函数的话, 即修改对应的名称
newHead: 'LADH' # 举例,如果使用 检测头LADH 的话, 即修改对应的名称
LA:'SimOTA' # 举例,如果使用 SimOTA动态标签分配策略 的话, 即修改对应的名称

# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 6], 1, Concat, [1]]  # cat backbone P4
- [-1, 3, C2f, [512]]  # 12

- [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- [[-1, 4], 1, Concat, [1]]  # cat backbone P3
- [-1, 3, C2f, [256]]  # 15 (P3/8-small)

- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]]  # cat head P4
- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]]  # cat head P5
- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5) # 这里使用的是检测头LADH

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1618180.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端CSS基础8(盒子模型(margin、border、padding、content))

前端CSS基础8(盒子模型(margin、border、padding、content)) CSS盒子模型CSS中常用的长度单位元素的分类,各个元素的显示模式修改元素的显示模式(类型)盒子模型的组成部分盒子内容区-contentCSS…

Python的venv虚拟环境

venv 是 Python 的一个内置模块,用于创建和管理虚拟环境(virtual environments)。虚拟环境可以独立于系统的全局环境,并且可以在其中安装特定版本的包和库,以便于项目之间的隔离和管理。下面是 venv 的使用教程&#x…

【SpringCloud】Consul-服务注册中心及配置中心快速入门

【SpringCloud】Consul-服务注册中心及配置中心快速入门 文章目录 【SpringCloud】Consul-服务注册中心及配置中心快速入门1. 下载安装及启动2. 服务注册2.1 引入依赖2.2 yml配置2.3 启动类配置2.4 测试 3. 服务配置3.1 引入依赖3.2 yml配置3.3 创建配置文件3.4 动态刷新配置3.…

有没有学网络空间安全的学长,想知道学长们毕业以后都去干嘛了?

我作为一个零基础小白到白帽黑客,也认识到了很多零基础小白的,有一些网络空间安全的学员,但是大多数还是非计算机相关专业的学员。他们通过系统学习网络安全,掌握黑客技术之后,都找到了自己满意的工作。 同学A&#x…

从0到1实现RPC | 接入Apollo配置中心

一、代码实现 添加依赖 添加apollo客户端的依赖和spring配置相关依赖 添加监听器 通过实现ApplicationContextAware接口,获取Spring上下文。 使用ApolloConfigChangeListener注解监听命名空间rpc-demo-provider.yaml和默认的application.properties。 监听逻辑…

Meta Llama 3本地部署

感谢阅读 环境安装收尾 环境安装 项目文件 下载完后在根目录进入命令终端(windows下cmd、linux下终端、conda的话activate) 运行 pip install -e .不要控制台,因为还要下载模型。这里挂着是节省时间 模型申请链接 复制如图所示的链接 然后…

翱途O2OA新手上路-服务器下载及私有云部署

本篇主要简要描述从官网下载服务器,进行部署,启动的过程,并且描述在部署过程中常见的问题与报错以及云服务器安全策略配置和O2OA服务器端口修改的方式。 O2OA部署的服务器要求不高,一般使用4C8G以上的服务器均可正常运行。 一、检…

Unity进阶之ScriptableObject

目录 ScriptableObject 概述ScriptableObject数据文件的创建数据文件的使用非持久数据让其真正意义上的持久ScriptableObject的应用配置数据复用数据数据带来的多态行为单例模式化的获取数据 ScriptableObject 概述 ScriptableObject是什么 ScriptableObject是Unity提供的一个…

Vue+OpenLayers7入门到实战,OpenLayers加载GeoJson数据并叠加GeoJson中的要素到地图上

返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7入门到实战 前言 本章介绍如何使用OpenLayers7在地图上加载GeoJson数据并叠加GeoJson中的要素到OpenLayers矢量图层上。 GeoJson数据格式可以参考博主另一篇文章《GIS开发入门,GeoJSON是什么?GeoJSON格式标准介绍》,那么…

Python Selenium无法打开Chrome浏览器处理自定义浏览器路径

问题 在使用Python Selenium控制Chrome浏览器操作的过程中,由于安装的Chrome浏览器的版本找不到对应版本的驱动chromedriver.exe文件,下载了小几个版本号的驱动软件。发现运行下面的代码是无法正常使用的: from selenium import webdriver …

在excel中,如何在一个表中删除和另一个表中相同的数据?

现在有A表,是活动全部人员的姓名和学号,B表是该活动中获得优秀人员的姓名和学号, 怎么提取没有获得优秀人员的名单? 这里提供两个使用excel基础功能的操作方法。 1.条件格式自动筛选 1.1按住Ctrl键,选中全表中的姓…

电机控制专题(一)——最大转矩电流比MTPA控制

文章目录 电机控制专题(一)——最大转矩电流比MTPA控制前言理论推导仿真验证轻载1Nm重载30Nm 总结 电机控制专题(一)——最大转矩电流比MTPA控制 前言 MTPA全称为Max Torque Per Ampere,从字面意思就可以知道MTPA算法的目的是一个寻优最值问题,可以从以…

如何高效的压缩GIF图片?一键搞定GIF动图压缩 就是这么简单

一,引言 压缩GIF动图是一个常见的需求,无论是在社交媒体上分享动态表情,还是在网页设计中添加动态元素,GIF动图都扮演着重要的角色。然而,过大的GIF文件大小可能会导致加载速度慢,影响用户体验。因此&…

【每日刷题】Day22

【每日刷题】Day22 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. 1669. 合并两个链表 - 力扣(LeetCode) 2. 11. 盛最多水的容器 - 力扣&#…

茶饮门店本地生活抖音团购运营方案计划书

【干货资料持续更新,以防走丢】 茶饮门店本地生活抖音团购运营方案计划书 部分资料预览 资料部分是网络整理,仅供学习参考。 PPT可编辑80页(完整资料包含以下内容) 目录 抖音本地生活运营方案 1. 账号基础搭建与优化 - 门店账号…

MTK6775/MT6775/曦力P70联发科处理器性能参数资料

联发科MT6775(曦力P70)芯片搭载强大的Arm Cortex-A73/A53八核CPU,并采用台积电12纳米FinFET制程工艺,相较于其他14纳米级别产品,功耗节省达到了15%。此外,曦力P70还配备了高效能的Arm Mali-G72 GPU,相比上一代产品曦力…

sklearn 笔记 metrics

1 分类 1.1 accuracy_score 分类准确率得分 在多标签分类中,此函数计算子集准确率:y_pred的标签集必须与 y_true 中的相应标签集完全匹配。 1.1.1 参数 y_true真实(正确)标签y_pred由分类器返回的预测标签normalize 默认为 Tr…

简单的图像处理算法

基础:图像处理都是用卷积矩阵对图像卷积计算,如3X3 的矩阵对640 X 480分辨率的图像卷积,最终会得到638 X 478 的图像。卷积过程是这样的: 一、中值滤波 : 找出矩阵中的最中间值作为像素点 二、均值滤波:找…

洛基计划project loki加速器推荐 免费低延迟联机加速器分享

洛基计划project loki加速器推荐 免费低延迟联机加速器分享 《洛基计划》是一款团队PVP游戏,融合有动作、英雄设计、大逃杀等元素,由前拳头游戏、Bungie和暴雪娱乐员工创立的新工作室Theorycraft Games共同发布。《洛基计划》汇集了一些大型团队PVP游戏…

(ICML-2021)从自然语言监督中学习可迁移的视觉模型

从自然语言监督中学习可迁移的视觉模型 Title:Learning Transferable Visual Models From Natural Language Supervision paper是OpenAI发表在ICML 21的工作 paper链接 Abstract SOTA计算机视觉系统经过训练可以预测一组固定的预定目标类别。这种受限的监督形式限制…