离线数仓数据导出-hive数据同步到mysql
- MySQL建库建表
- 数据导出
为方便报表应用使用数据,需将ads各指标的统计结果导出到MySQL数据库中。
datax支持hive同步MySQL:仅仅支持hive存储的hdfs文件导出。所以reader选hdfs-reader,writer选mysql-writer。
null值 在hive和mysql里的存储格式不一样,需要告诉DataX应该如何转换。
MySQL建库建表
12.1.1 创建数据库
CREATE DATABASE IF NOT EXISTS gmall_report DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
建mysql表的,
1字段个数要和hive中的ads层数据保持一致,
2字段类型要和hive对等替换,
3字段顺序也要一致
每张表要有主键
1)各活动补贴率
dt activity_id activity_name 三个主键联合而成
DROP TABLE IF EXISTS `ads_activity_stats`;
CREATE TABLE `ads_activity_stats` (
`dt` date NOT NULL COMMENT '统计日期',
`activity_id` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT '活动ID',
`activity_name` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '活动名称',
`start_date` varchar(16) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '活动开始日期',
`reduce_rate` decimal(16, 2) NULL DEFAULT NULL COMMENT '补贴率',
PRIMARY KEY (`dt`, `activity_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = '活动统计' ROW_FORMAT = Dynamic;
数据导出
DataX配置文件生成脚本
方便起见,此处提供了DataX配置文件批量生成脚本,脚本内容及使用方式如下。
1)在~/bin目录下创建gen_export_config.py脚本
[atguigu@hadoop102 bin]$ vim ~/bin/gen_export_config.py
脚本内容如下
# coding=utf-8
import json
import getopt
import os
import sys
import MySQLdb
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "000000"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop102"
hdfs_nn_port = "8020"
#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/export"
def get_connection():
return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
def get_mysql_columns(database, table):
return map(lambda x: x[0], get_mysql_meta(database, table))
def generate_json(target_database, target_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "hdfsreader",
"parameter": {
"path": "${exportdir}",
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"column": ["*"],
"fileType": "text",
"encoding": "UTF-8",
"fieldDelimiter": "\t",
"nullFormat": "\\N"
}
},
"writer": {
"name": "mysqlwriter",
"parameter": {
"writeMode": "replace",
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(target_database, target_table),
"connection": [
{
"jdbcUrl":
"jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + target_database + "?useUnicode=true&characterEncoding=utf-8",
"table": [target_table]
}
]
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([target_database, target_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
target_database = ""
target_table = ""
options, arguments = getopt.getopt(args, '-d:-t:', ['targetdb=', 'targettbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--targetdb'):
target_database = opt_value
if opt_name in ('-t', '--targettbl'):
target_table = opt_value
generate_json(target_database, target_table)
if __name__ == '__main__':
main(sys.argv[1:])
在~/bin目录下创建gen_export_config.sh脚本
[atguigu@hadoop102 bin]$ vim ~/bin/gen_export_config.sh
脚本内容如下。
#!/bin/bash
python ~/bin/gen_export_config.py -d gmall_report -t ads_activity_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_coupon_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_new_buyer_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_order_by_province
python ~/bin/gen_export_config.py -d gmall_report -t ads_page_path
python ~/bin/gen_export_config.py -d gmall_report -t ads_repeat_purchase_by_tm
python ~/bin/gen_export_config.py -d gmall_report -t ads_sku_cart_num_top3_by_cate
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats_by_cate
python ~/bin/gen_export_config.py -d gmall_report -t ads_trade_stats_by_tm
python ~/bin/gen_export_config.py -d gmall_report -t ads_traffic_stats_by_channel
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_action
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_change
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_retention
python ~/bin/gen_export_config.py -d gmall_report -t ads_user_stats
3)为gen_export_config.sh脚本增加执行权限
[atguigu@hadoop102 bin]$ chmod +x ~/bin/gen_export_config.sh
4)执行gen_export_config.sh脚本,生成配置文件
[atguigu@hadoop102 bin]$ gen_export_config.sh
5)观察生成的配置文件
[atguigu@hadoop102 bin]$ ls /opt/module/datax/job/export/
编写每日导出脚本
(1)在hadoop102的/home/atguigu/bin目录下创建hdfs_to_mysql.sh
[atguigu@hadoop102 bin]$ vim hdfs_to_mysql.sh
(2)编写如下内容
#! /bin/bash
DATAX_HOME=/opt/module/datax
#DataX导出路径不允许存在空文件,该函数作用为清理空文件
handle_export_path(){
target_file=$1
for i in `hadoop fs -ls -R $target_file | awk '{print $8}'`; do
hadoop fs -test -z $i
if [[ $? -eq 0 ]]; then
echo "$i文件大小为0,正在删除"
hadoop fs -rm -r -f $i
fi
done
}
#数据导出
export_data() {
datax_config=$1
export_dir=$2
hadoop fs -test -e $export_dir
if [[ $? -eq 0 ]]
then
handle_export_path $export_dir
file_count=$(hadoop fs -ls $export_dir | wc -l)
if [ $file_count -gt 0 ]
then
set -e;
$DATAX_HOME/bin/datax.py -p"-Dexportdir=$export_dir" $datax_config
set +e;
else
echo "$export_dir 目录为空,跳过~"
fi
else
echo "路径 $export_dir 不存在,跳过~"
fi
}
case $1 in
"ads_new_buyer_stats")
export_data /opt/module/datax/job/export/gmall_report.ads_new_buyer_stats.json /warehouse/gmall/ads/ads_new_buyer_stats
;;
"ads_order_by_province")
export_data /opt/module/datax/job/export/gmall_report.ads_order_by_province.json /warehouse/gmall/ads/ads_order_by_province
;;
"ads_page_path")
export_data /opt/module/datax/job/export/gmall_report.ads_page_path.json /warehouse/gmall/ads/ads_page_path
;;
"ads_repeat_purchase_by_tm")
export_data /opt/module/datax/job/export/gmall_report.ads_repeat_purchase_by_tm.json /warehouse/gmall/ads/ads_repeat_purchase_by_tm
;;
"ads_trade_stats")
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats.json /warehouse/gmall/ads/ads_trade_stats
;;
"ads_trade_stats_by_cate")
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_cate.json /warehouse/gmall/ads/ads_trade_stats_by_cate
;;
"ads_trade_stats_by_tm")
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_tm.json /warehouse/gmall/ads/ads_trade_stats_by_tm
;;
"ads_traffic_stats_by_channel")
export_data /opt/module/datax/job/export/gmall_report.ads_traffic_stats_by_channel.json /warehouse/gmall/ads/ads_traffic_stats_by_channel
;;
"ads_user_action")
export_data /opt/module/datax/job/export/gmall_report.ads_user_action.json /warehouse/gmall/ads/ads_user_action
;;
"ads_user_change")
export_data /opt/module/datax/job/export/gmall_report.ads_user_change.json /warehouse/gmall/ads/ads_user_change
;;
"ads_user_retention")
export_data /opt/module/datax/job/export/gmall_report.ads_user_retention.json /warehouse/gmall/ads/ads_user_retention
;;
"ads_user_stats")
export_data /opt/module/datax/job/export/gmall_report.ads_user_stats.json /warehouse/gmall/ads/ads_user_stats
;;
"ads_activity_stats")
export_data /opt/module/datax/job/export/gmall_report.ads_activity_stats.json /warehouse/gmall/ads/ads_activity_stats
;;
"ads_coupon_stats")
export_data /opt/module/datax/job/export/gmall_report.ads_coupon_stats.json /warehouse/gmall/ads/ads_coupon_stats
;;
"ads_sku_cart_num_top3_by_cate")
export_data /opt/module/datax/job/export/gmall_report.ads_sku_cart_num_top3_by_cate.json /warehouse/gmall/ads/ads_sku_cart_num_top3_by_cate
;;
"all")
export_data /opt/module/datax/job/export/gmall_report.ads_new_buyer_stats.json /warehouse/gmall/ads/ads_new_buyer_stats
export_data /opt/module/datax/job/export/gmall_report.ads_order_by_province.json /warehouse/gmall/ads/ads_order_by_province
export_data /opt/module/datax/job/export/gmall_report.ads_page_path.json /warehouse/gmall/ads/ads_page_path
export_data /opt/module/datax/job/export/gmall_report.ads_repeat_purchase_by_tm.json /warehouse/gmall/ads/ads_repeat_purchase_by_tm
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats.json /warehouse/gmall/ads/ads_trade_stats
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_cate.json /warehouse/gmall/ads/ads_trade_stats_by_cate
export_data /opt/module/datax/job/export/gmall_report.ads_trade_stats_by_tm.json /warehouse/gmall/ads/ads_trade_stats_by_tm
export_data /opt/module/datax/job/export/gmall_report.ads_traffic_stats_by_channel.json /warehouse/gmall/ads/ads_traffic_stats_by_channel
export_data /opt/module/datax/job/export/gmall_report.ads_user_action.json /warehouse/gmall/ads/ads_user_action
export_data /opt/module/datax/job/export/gmall_report.ads_user_change.json /warehouse/gmall/ads/ads_user_change
export_data /opt/module/datax/job/export/gmall_report.ads_user_retention.json /warehouse/gmall/ads/ads_user_retention
export_data /opt/module/datax/job/export/gmall_report.ads_user_stats.json /warehouse/gmall/ads/ads_user_stats
export_data /opt/module/datax/job/export/gmall_report.ads_activity_stats.json /warehouse/gmall/ads/ads_activity_stats
export_data /opt/module/datax/job/export/gmall_report.ads_coupon_stats.json /warehouse/gmall/ads/ads_coupon_stats
export_data /opt/module/datax/job/export/gmall_report.ads_sku_cart_num_top3_by_cate.json /warehouse/gmall/ads/ads_sku_cart_num_top3_by_cate
;;
esac
(3)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod +x hdfs_to_mysql.sh
(4)脚本用法
[atguigu@hadoop102 bin]$ hdfs_to_mysql.sh all