OWASP发布大语言模型网络安全与治理清单

news2024/12/27 13:26:29

当前人工智能技术面临的最大风险是大语言模型(LLM)和生成式人工智能技术的发展和应用速度已经远远超过了安全和治理的速度。

OpenAI、Anthropic、谷歌和微软等公司的生成式人工智能和大语言模型产品的使用正呈指数级增长。与此同时,开源大语言模型方案也在高速成长,HuggingFace等开源人工智能社区为技术社区提供了大量开源模型、数据集和AI应用。

为了追赶人工智能的发展脚步,OWASP、OpenSSF、CISA等行业组织正在积极开发和提供人工智能安全与治理关键资源,例如OWASP AI Exchange、AI安全和隐私指南以及大语言模型十大风险清单(LLMTop10)。

近日,OWASP发布了大语言模型网络安全与治理清单,填补了生成式人工智能安全治理的空白,具体内容如下:

OWASP对AI类型与威胁的定义

OWASP大语言模型网络安全与治理清单对人工智能、机器学习、生成式人工智能和大语言模型之间的区别给出了定义。

例如,OWASP对生成式人工智能的定义是:一种专注于创建新数据的机器学习,而大语言模型是一种用于处理和生成类人文本的人工智能模型——它们根据所提供的输入进行预测,并且输出是类似人类产生的“自然内容”。

对于此前发布的“大语言模型十大威胁清单”,OWASP认为它可以帮助网络安全从业者跟上快速发展的AI技术,识别关键威胁并确保企业拥有基本的安全控制措施来保护和支持采用生成式人工智能和大语言模型的业务。但OWASP认为该清单并不详尽,而且需要根据生成式人工智能的发展而不断完善。

OWASP将AI安全威胁分为以下五种:

OWASP的大语言模型安全治理策略部署分为六步:

以下是OWASP大语言模型网路安全与治理清单:

对手风险

大语言模型的对手风险不仅涉及竞争对手,还涉及攻击者,其关注点不仅是攻击态势,还包括商业态势。这包括了解竞争对手如何使用人工智能来推动业务成果,以及更新内部流程和政策(例如事件响应计划(IRP)),以应对生成式人工智能攻击和事件。

威胁建模

威胁建模是一种日益流行的安全技术,随着安全设计系统理念的推广而获得越来越多的关注,得到了美国网络安全和基础设施安全局(CISA)等权威机构的认可。威胁建模需要思考攻击者如何利用大型语言模型和生成式人工智能来加速漏洞利用,企业检测恶意大型语言模型的能力,以及组织是否能够保护大型语言模型和生成式人工智能平台与内部系统和环境的连接。

人工智能资产清单

“你无法保护未知的资产”这句格言也适用于生成式人工智能和大语言模型领域。OWASP清单的这部分内容涉及对内部开发的人工智能解决方案以及外部工具和平台进行人工智能资产清单编制。

OWASP强调,企业不仅要了解内部使用了哪些工具和服务,还要了解其所有权,即谁对这些工具和服务的使用负责。清单还建议将人工智能组件包含在软件材料清单(SBOM)中,并记录人工智能数据源及其各自的敏感性。

除了对现有人工智能工具进行清单编制之外,企业还应该建立一个安全流程将未来的AI工具和服务添加到清单中。

人工智能安全和隐私意识培训

人们常说“人是最大的安全漏洞”,企业只有将人工智能安全和隐私培训合理集成到其生成式人工智能和大语言模型的应用过程中,才能极大缓解人的风险。

这包括帮助员工了解现有生成式人工智能/大语言模型计划、技术及其功能,以及关键的安全注意事项,例如数据泄漏。此外,建立信任和透明的安全文化至关重要。

企业内部的信任和透明文化也有助于避免影子AI威胁,否则,员工将“偷偷“使用影子AI而不告诉IT和安全团队。

人工智能项目的商业论证

就像云计算一样,大多数企业实际上并没有为生成式人工智能和大语言模型等新技术应用制定连贯的战略性商业论证,很容易盲目跟风,陷入炒作。没有合理的商业论证,企业的人工智能应用很可能会产生糟糕结果并增加风险。

6治理

没有治理,企业就无法建立人工智能的责任机制和明确目标。OWASP清单建议企业为人工智能应用制定RACI图表(责任分配矩阵),记录并分配风险责任和治理任务,建立全企业范围的人工智能政策和流程。

法律

随着人工智能技术的飞速发展,其法律影响不容低估,并可能在给企业带来财务和声誉的重大风险。

人工智能法务涉及一系列活动,例如人工智能产品质保、人工智能最终用户许可协议(EULA)、使用人工智能工具开发的代码的所有权、知识产权风险和合同赔偿条款等。简而言之,请确保企业的法律团队或专家了解企业使用生成式人工智能和大语言模型时应该开展的各种配套法律活动。

监管

人工智能监管法规也在迅速发展,例如欧盟的人工智能法案,其他国家和地区的法规也将很快出台。企业应该了解所在国家的人工智能合规要求,例如员工监控,并清楚地了解其人工智能供应商如何存储和删除数据以及如何监管其使用。

使用或实施大语言模型解决方案

使用大型语言模型解决方案需要考虑特定的风险和控制措施。OWASP清单列出了诸如访问控制、训练管道安全、映射数据工作流以及了解大型语言模型模型和供应链中存在的或潜在的漏洞等项目。此外,还需要对供应商进行第三方审计、渗透测试甚至代码审查,这些工作既要初始进行,也要持续进行。

10 测试、评估、验证和确认(TEVV)

TEVV流程是NIST在其人工智能框架中特别推荐的流程。这涉及在整个人工智能模型生命周期中建立持续的测试、评估、验证和验证,以及提供有关人工智能模型功能、安全性和可靠性的执行指标。

11 模型卡和风险卡

为了合乎道德地部署大语言模型,OWASP清单要求企业使用模型和风险卡,这些卡可用于让用户理解和信任人工智能系统,并公开解决偏见和隐私等潜在的负面后果。

这些卡片可以包含模型详细信息、架构、训练数据方法和性能指标等项目。还强调考虑负责任的人工智能所需要考虑的因素以及对公平和透明度的关注。

12 RAG:大语言模型优化

检索增强生成(RAG)是一种优化大语言模型从特定来源检索相关数据能力的方法。它是优化预训练模型或根据新数据重新训练现有模型提高性能的方法之一。OWASP建议企业实施RAG,以最大限度地提高大语言模型的价值和有效性。

13 AI红队

最后,OWASP清单强调了人工智能红队的重要性,后者模拟人工智能系统的对抗性攻击,以识别漏洞并验证现有的控制和防御。OWASP强调,红队应该是生成式人工智能和大语言模型的综合安全解决方案不可或缺的一部分。

值得注意的是,企业还需要清楚地了解外部生成式人工智能和大语言模型供应商的红队服务和系统要求与能力,以避免违反政策,甚至陷入法律麻烦。

参考链接:

https://owasp.org/www-project-top-10-for-large-language-model-applications/llm-top-10-governance-doc/LLM_AI_Security_and_Governance_Checklist-v1.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1606584.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker 部署 MongoDB 数据库

文章目录 官网地址docker 网络mongod.conf部署 MongoDB部署 mongo-expressdocker-compose.ymlMongoDB shell 官网地址 https://www.mongodb.com/zh-cn docker 网络 # 创建 mongo_network 网络 docker network create mongo_network # 查看网络 docker network list # 容器连…

基于Springboot的简历系统

基于SpringbootVue的简历系统的设计与实现 开发语言:Java数据库:MySQL技术:SpringbootMybatis工具:IDEA、Maven、Navicat 系统展示 用户登录 首页 简历模板 招聘会 求职论坛 系统公告 后台登录 后台首页 用户管理 简历模板 模板…

Ubuntu24.04之软件源修改

注意事项 Ubuntu24.04的软件源从/etc/apt/sources.list改为/etc/apt/sources.list.d/ubuntu.sources 修改步骤 #备份软件源 sudo cp /etc/apt/sources.list.d/ubuntu.sources /etc/apt/sources.list.d/ubuntu.sources.bak #更换软件源(更换为中科大源&#xff0…

Flask + Bootstrap vs Flask + React/Vue:初学者指南

在这篇博客文章中,我们将比较 Flask Bootstrap 和 Flask React/Vue 这两种技术栈,以帮助初学者了解哪种组合更适合他们的项目需求。我们将从学习曲线、易用性、依赖管理、构建部署和路由定义等方面进行比较。 学习曲线 Flask 是一个基于 Python 的轻…

RIP最短路实验(华为)

思科设备参考:RIP最短路实验(思科) 一,技术简介 RIP(Routing Information Protocol,路由信息协议)是一种基于距离矢量的内部网关协议,工作原理是每个路由器周期性地向邻居路由器发…

阿里云服务器上配置Docker 以及常用命令讲解

目录 一、认识docer二、在阿里云服务器上配置Docker三、底层原理4、常用命令(1)Docker中常见镜像命令(2)Docker中常见容器命令(3)日志查看命令(4)进入容器的命令与拷贝命令 一、认识…

个人博客建设必备:精选域名和主机的终极攻略

本文目录 🌏引言🌏域名的选择🌕域名的重要性品牌识别营销和宣传可访问性和易记性信任和权威感搜索引擎优化(SEO)未来的灵活性和扩展性保护品牌 🌕如何选择域名🌕工具与资源分享国内的主流域名注…

Idea修改【Help->Edit Custom VM Options...】后,导致idea无法正常启动的解决方法

一、错误场景: 二、解决方法: 修改文件路径:C:\Users\tianjm(写自己的用户名)\AppData\Roaming\JetBrains\IdeaIC2024.1(选自己安装的版本)

OpenHarmony多媒体-ijkplayer

简介 ijkplayer是OpenHarmony环境下可用的一款基于FFmpeg的视频播放器。 演示 编译运行 1、通过IDE工具下载依赖SDK,Tools->SDK Manager->OpenHarmony SDK 把native选项勾上下载,API版本>9 2、开发板选择RK3568,ROM下载地址. 选择…

jvm中提前进入老年代

在JVM中,对象的“年龄”通常指的是对象经过了多少次Minor GC(新生代垃圾回收)后仍然存活。每次Minor GC后,存活的对象会被移动到Survivor区,并且它们的年龄会增加。当对象的年龄达到某个阈值(这个阈值可以通…

java锁介绍

乐观锁 乐观地认为并发访问不会造成数据冲突,只在更新时检查是否有冲突。乐观锁和CAS的关系可以用“乐观锁是一种思想,CAS是一种具体的实现”来理解。 当使用CAS操作修改数据时,如果版本号不匹配或者其他线程已经修改了要操作的数据&#x…

AI讲师人工智能讲师大模型培训讲师叶梓:突破大型语言模型推理效率的创新方法

大型语言模型(LLM)在自然语言处理(NLP)任务中展现出了前所未有的能力,但它们对计算资源的巨大需求限制了其在资源受限环境中的应用。SparQ Attention算法提出了一种创新的方法,通过减少注意力机制中的内存带…

混合app开发

安卓与h5交互 原生调用js js调用原生 ios与h5交互 代码演示 ios调用h5 xcode创建一个ios项目 h5调用原生 h5部分代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" conten…

二分法问题

日升时奋斗&#xff0c;日落时自省 目录 1、二分法 2、二分法问题 2.1 、在排序数组中查找元素的第一个和最后一个位置 2.2、搜索插入位置 2.3、山脉数组的峰顶索引 2.4、0-n-1中缺失的数字 1、二分法 二分法是比较简单的一种查找算法&#xff0c;但是效率很高&#xff0…

掌握Node Version Manager(nvm):跨平台Node.js版本管理

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

瀑布流组件(vue2)

文档连接&#xff1a;clz 加载状态、行数 可以自行控制&#xff0c;目前只支持vue2 实现效果&#xff1a;

【TDSQL】TCPMSS最大数据分段大小值不合理导致JAVA程序连接数据库异常案例

欢迎关注“数据库运维之道”公众号&#xff0c;一起学习数据库技术! TDSQL核心架构原理解析下载链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;vat5 DTC2024 数据技术嘉年华&#xff08;演讲资料下载&#xff09;DTC2024 数据技术嘉年华&#xff08;演讲资料下载…

生成人工智能体:人类行为的交互式模拟论文与源码架构解析(5)——可控评估端到端评估

最后完结篇,文末有测试中发现的有趣现象,并附上了相关资料链接~ 5.可控评估 分两个阶段评估生成代理。我们从一个更加严格控制的评估开始,单独评估代理的响应,以了解它们是否在狭义上定义的上下文中产生可信的行为。然后,在我们对代理社区进行为期两天的端到端分析中,我…

决策树分类器(保姆级教学) 定义+特性+原理及公式+鸢尾花分类经典问题示例(完整Python代码带详细注释、保姆级分部代码解释及结果说明、决策树可视化及解释)

文章目录 引言定义特性基本原理和公式理解信息增益&#xff08;ID3算法&#xff09;熵的定义条件熵信息增益的计算 基尼不纯度&#xff08;CART算法&#xff09;基尼不纯度的定义基尼不纯度的计算例子 实现步骤解决鸢尾花分类问题&#xff08;机器学习入门中的经典案例Python代…

传感器融合 | 适用于自动驾驶场景的激光雷达传感器融合项目_将激光雷达的高分辨率成像+测量物体速度的能力相结合

项目应用场景 面向自动驾驶场景的激光雷达传感器融合&#xff0c;将激光雷达的高分辨率成像测量物体速度的能力相结合&#xff0c;项目是一个从多个传感器获取数据并将其组合起来的过程&#xff0c;可以更加好地进行环境感知。项目支持 ubuntu、mac 和 windows 平台。 项目效果…