10个常用的损失函数及Python代码实现

news2024/10/6 1:39:27

本文深入理解并详细介绍了10个常用的损失函数及Python代码实现。

什么是损失函数?

损失函数是一种衡量模型与数据吻合程度的算法。损失函数测量实际测量值和预测值之间差距的一种方式。损失函数的值越高预测就越错误,损失函数值越低则预测越接近真实值。对每个单独的观测(数据点)计算损失函数。将所有损失函数(loss function)的值取平均值的函数称为代价函数(cost function),更简单的理解就是损失函数是针对单个样本的,而代价函数是针对所有样本的。

损失函数与度量指标

一些损失函数也可以被用作评价指标。但是损失函数和度量指标(metrics)有不同的目的。虽然度量指标用于评估最终模型并比较不同模型的性能,但损失函数在模型构建阶段用作正在创建的模型的优化器。损失函数指导模型如何最小化误差。

也就是说损失函数是知道模型如何训练的,而度量指标是说明模型的表现的

为什么要用损失函数?

由于损失函数测量的是预测值和实际值之间的差距,因此在训练模型时可以使用它们来指导模型的改进(通常的梯度下降法)。在构建模型的过程中,如果特征的权重发生了变化得到了更好或更差的预测,就需要利用损失函数来判断模型中特征的权重是否需要改变,以及改变的方向。

我们可以在机器学习中使用各种各样的损失函数,这取决于我们试图解决的问题的类型、数据质量和分布以及我们使用的算法,下图为我们整理的10个常见的损失函数:

图片

回归问题

1、均方误差(MSE)

均方误差是指所有预测值和真实值之间的平方差,并将其平均值。常用于回归问题。

def MSE (y, y_predicted):
   sq_error = (y_predicted - y) ** 2
   sum_sq_error = np.sum(sq_error)
   mse = sum_sq_error/y.size
   return mse

2、平均绝对误差(MAE)

作为预测值和真实值之间的绝对差的平均值来计算的。当数据有异常值时,这是比均方误差更好的测量方法。

def MAE (y, y_predicted):
   error = y_predicted - y
   absolute_error = np.absolute(error)
   total_absolute_error = np.sum(absolute_error)
   mae = total_absolute_error/y.size
   return mae

3、均方根误差(RMSE)

这个损失函数是均方误差的平方根。如果我们不想惩罚更大的错误,这是一个理想的方法。

def RMSE (y, y_predicted):
   sq_error = (y_predicted - y) ** 2
   total_sq_error = np.sum(sq_error)
   mse = total_sq_error/y.size
   rmse = math.sqrt(mse)
   return rmse

4、平均偏差误差(MBE)

类似于平均绝对误差但不求绝对值。这个损失函数的缺点是负误差和正误差可以相互抵消,所以当研究人员知道误差只有一个方向时,应用它会更好。

def MBE (y, y_predicted):
   error = y_predicted -  y
   total_error = np.sum(error)
   mbe = total_error/y.size
   return mbe

5、Huber损失

Huber损失函数结合了平均绝对误差(MAE)和均方误差(MSE)的优点。这是因为Hubber损失是一个有两个分支的函数。一个分支应用于符合期望值的MAE,另一个分支应用于异常值。Hubber Loss一般函数为:

在这里插入图片描述

这里的

def hubber_loss (y, y_predicted, delta)
   delta = 1.35 * MAE
   y_size = y.size
   total_error = 0
   for i in range (y_size):
      erro = np.absolute(y_predicted[i] - y[i])
      if error < delta:
         hubber_error = (error * error) / 2
      else:
         hubber_error = (delta * error) / (0.5 * (delta * delta))
      total_error += hubber_error
   total_hubber_error = total_error/y.size
   return total_hubber_error

二元分类

6、最大似然损失(Likelihood Loss/LHL)

该损失函数主要用于二值分类问题。将每一个预测值的概率相乘,得到一个损失值,相关的代价函数是所有观测值的平均值。让我们用以下二元分类的示例为例,其中类别为[0]或[1]。如果输出概率等于或大于0.5,则预测类为[1],否则为[0]。输出概率的示例如下:

[0.3 , 0.7 , 0.8 , 0.5 , 0.6 , 0.4]

对应的预测类为:

[0 , 1 , 1 , 1 , 1 , 0]

而实际的类为:

[0 , 1 , 1 , 0 , 1 , 0]

现在将使用真实的类和输出概率来计算损失。如果真类是[1],我们使用输出概率,如果真类是[0],我们使用1-概率:

((10.3)+0.7+0.8+(10.5)+0.6+(10.4)) / 6 = 0.65

Python代码如下:

def LHL (y, y_predicted):
   likelihood_loss = (y * y_predicted) + ((1-y) * (y_predicted))
   total_likelihood_loss = np.sum(likelihood_loss)
   lhl = - total_likelihood_loss / y.size
   return lhl

7、二元交叉熵(BCE)

这个函数是对数的似然损失的修正。对数列的叠加可以惩罚那些非常自信但是却错误的预测。二元交叉熵损失函数的一般公式为:

在这里插入图片描述

让我们继续使用上面例子的值:

  1. 输出概率= [0.3、0.7、0.8、0.5、0.6、0.4]
  2. 实际的类= [0,1,1,0,1,0]
  • (0 . log (0.3) + (1–0) . log (1–0.3)) = 0.155
  • (1 . log(0.7) + (1–1) . log (0.3)) = 0.155
  • (1 . log(0.8) + (1–1) . log (0.2)) = 0.097
  • (0 . log (0.5) + (1–0) . log (1–0.5)) = 0.301
  • (1 . log(0.6) + (1–1) . log (0.4)) = 0.222
  • (0 . log (0.4) + (1–0) . log (1–0.4)) = 0.222

那么代价函数的结果为:

(0.155 + 0.155 + 0.097 + 0.301 + 0.222 + 0.222) / 6 = 0.192

Python的代码如下:

def BCE (y, y_predicted):
   ce_loss = y*(np.log(y_predicted))+(1-y)*(np.log(1-y_predicted))
   total_ce = np.sum(ce_loss)
   bce = - total_ce/y.size
   return bce

8、Hinge Loss 和 Squared Hinge Loss (HL and SHL)

Hinge Loss被翻译成铰链损失或者合页损失,这里还是以英文为准。

Hinge Loss主要用于支持向量机模型的评估。错误的预测和不太自信的正确预测都会受到惩罚。所以一般损失函数是:

这里的t是真实结果用[1]或[-1]表示。

使用Hinge Loss的类应该是[1]或-1。为了在Hinge loss函数中不被惩罚,一个观测不仅需要正确分类而且到超平面的距离应该大于margin(一个自信的正确预测)。如果我们想进一步惩罚更高的误差,我们可以用与MSE类似的方法平方Hinge损失,也就是Squared Hinge Loss。

如果你对SVM比较熟悉,应该还记得在SVM中,超平面的边缘(margin)越高,则某一预测就越有信心。如果这块不熟悉,则看看这个可视化的例子:

在这里插入图片描述

如果一个预测的结果是1.5,并且真正的类是[1],损失将是0(零),因为模型是高度自信的。

loss= Max (0,1 - 1* 1.5) = Max (0, -0.5) = 0

在这里插入图片描述

如果一个观测结果为0(0),则表示该观测处于边界(超平面),真实的类为[-1]。损失为1,模型既不正确也不错误,可信度很低。

在这里插入图片描述

如果一次观测结果为2,但分类错误(乘以[-1]),则距离为-2。损失是3(非常高),因为我们的模型对错误的决策非常有信心(这个是绝不能容忍的)。

python代码如下:

#Hinge Loss 
def Hinge (y, y_predicted): 
   hinge_loss = np.sum(max(0 , 1 - (y_predicted * y))) 
   return hinge_loss 

#Squared Hinge Loss 
def SqHinge (y, y_predicted): 
   sq_hinge_loss = max (0 , 1 - (y_predicted * y)) ** 2 
   total_sq_hinge_loss = np.sum(sq_hinge_loss) 
   return total_sq_hinge_loss

多分类

9、交叉熵(CE)

在这里插入图片描述

使用Python的代码示例可以更容易理解:

def CCE (y, y_predicted): 
   cce_class = y * (np.log(y_predicted)) 
   sum_totalpair_cce = np.sum(cce_class) 
   cce = - sum_totalpair_cce / y.size 
   return cce

10、Kullback-Leibler 散度 (KLD)

又被简化称为KL散度,它类似于分类交叉熵,但考虑了观测值发生的概率。如果我们的类不平衡,它特别有用。

def KL (y, y_predicted): 
   kl = y * (np.log(y / y_predicted)) 
   total_kl = np.sum(kl) 
   return total_kl

以上就是常见的10个损失函数,希望对你有所帮助。

关于Python学习指南

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、自动化办公等学习教程。带你从零基础系统性的学好Python!

👉Python所有方向的学习路线👈

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取)

在这里插入图片描述

👉Python学习视频600合集👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉Python70个实战练手案例&源码👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉Python大厂面试资料👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

👉Python副业兼职路线&方法👈

学好 Python 不论是就业还是做副业赚钱都不错,但要学会兼职接单还是要有一个学习规划。

在这里插入图片描述

👉 这份完整版的Python全套学习资料已经上传,朋友们如果需要可以扫描下方CSDN官方认证二维码或者点击链接免费领取保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1601580.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day99:云上攻防-云原生篇K8s安全实战场景攻击Pod污点Taint横向移动容器逃逸

目录 云原生-K8s安全-横向移动-污点Taint 云原生-K8s安全-Kubernetes实战场景 知识点&#xff1a; 1、云原生-K8s安全-横向移动-污点Taint 2、云原生-K8s安全-Kubernetes实战场景 云原生-K8s安全-横向移动-污点Taint 如何判断实战中能否利用污点Taint&#xff1f; 设置污点…

【项目实战】记录一次PG数据库迁移至GaussDB测试(上)

目录 一、说明 1.1、参考文档 1.2、注意事项 1.3、环境基本情况 二、GaussDB新环境安装 2.1 配置操作环境变量 2.1.1 关闭防火墙 步骤1 执行以下命令&#xff0c;检查防火墙是否关闭。 步骤2 执行以下命令&#xff0c;关闭防火墙并禁止开机启动。 步骤3 修改/etc/sel…

济南大学微软校区教室OLED透明屏项目报告

济南大学微软校区教室OLED透明屏项目报告 产品&#xff1a;55寸OLED透明屏 项目时间&#xff1a;2024年04月 项目地点&#xff1a;山东济南 一、项目概述 本次项目旨在为济南大学微软校区的教室配备先进的55寸OLED透明屏&#xff0c;以满足现代化教学需求&#xff0c;提升教学…

虹科Pico汽车示波器 | 免拆诊断案例 | 2016款保时捷911 GT3 RS车发动机异响

一、故障现象 一辆2016款保时捷911 GT3 RS车&#xff0c;搭载4.0 L水平对置发动机&#xff08;型号为MA176&#xff09;&#xff0c;累计行驶里程约为4.2万km。车主反映&#xff0c;1星期前上过赛道&#xff0c;现在发动机有“哒哒”异响。 二、故障诊断 接车后试车&#xff…

Vue3 + Element-Plus 使用 Table 预览图片发生元素遮挡

Vue3 Element-Plus 使用 Table 预览图片发生元素遮挡 问题代码问题重现解决方法最终效果 问题代码 <el-table-column label"视频" align"center"><template #default"scope" style"display: flex;"><div style"…

Keepalived+LVS+nginx搭建nginx高可用集群

一、简介 nginx是一款非常优秀的反向代理工具&#xff0c;支持请求分发&#xff0c;负载均衡&#xff0c;以及缓存等等非常实用的功能。在请求处理上&#xff0c;nginx采用的是epoll模型&#xff0c;这是一种基于事件监听的模型&#xff0c;因而其具备非常高效的请求处理效率…

Qt 4 QPushButton

Qt 常用控件 QPushButton 实例 Push Button:命令按钮。 入口文件 main.cpp #include "mainwindow.h"#include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);MainWindow w;w.show();return a.exec(); }头文件 mainwindow.h …

【C 数据结构】单链表

文章目录 【 1. 基本原理 】1.1 链表的节点1.2 头指针、头节点、首元节点 【 2. 链表的创建 】2.0 创建1个空链表&#xff08;仅有头节点&#xff09;2.1 创建单链表&#xff08;头插入法&#xff09;*2.2 创建单链表&#xff08;尾插入法&#xff09; 【 3. 链表插入元素 】【…

rabbitmq每小时自动重启

引言 找了半天&#xff0c;最后通过系统日志发现是因为执行 systemctl restart rabbitmq-server 命令无法返回回调 systemctl 导致超时&#xff0c;自动关机。怀疑是 rabbitmq 与 systemctl 冲突&#xff0c;后 mq 升级版本已修复&#xff0c;可参考&#xff1a;https://github…

golang-基础语法

make 和 new 的区别 make 和 new 都是用来分配内存 make 只能对 slice map channel 进行初始化结构体实例。new 可以对任意类型进行初始化make 用于分配数据对象的具体实例&#xff0c;new 用于分配数据类型的默认值&#xff0c;并返回该数据的指针。 new 出来的 slice 、ma…

springboot Logback 不同环境,配置不同的日志输出路径

1.背景&#xff1a; mac 笔记本开发&#xff0c;日志文件写到/data/logs/下&#xff0c;控制台报出&#xff1a;Failed to create parent directories for [/data/logs/........... 再去手动在命令窗口创建文件夹data&#xff0c;报Read-only file system 2.修改logback-spri…

(C++) 稀疏表Sparse Table

目录 一、介绍 1.1 倍增 1.2 稀疏表ST 二、原理 三、代码实现 3.1 创建稀疏表 3.2 初始化数值 3.3 ST查询 一、介绍 1.1 倍增 倍增的思想是在数据空间特别大的时候&#xff0c;快速进行查找搜索而使用的。例如想要在一个数据量为n的递增数组中查找到等于x的下标&#x…

算法|基础算法|高精度算法

基础算法|位运算 1.高精度加法 2.高精度减法 3.高精度乘法 4.高精度除法 心有猛虎&#xff0c;细嗅蔷薇。你好朋友&#xff0c;这里是锅巴的C\C学习笔记&#xff0c;常言道&#xff0c;不积跬步无以至千里&#xff0c;希望有朝一日我们积累的滴水可以击穿顽石。 高精度加法 …

图灵奖得主AviWigderson:随机性与AI深度融合,引领计算科学新篇章

近日&#xff0c;理论计算机科学领域的杰出代表Avi Wigderson教授荣获了享有“计算机界诺贝尔奖”美誉的图灵奖&#xff0c;以表彰他对计算中随机性和伪随机性研究的杰出贡献。这一荣誉不仅彰显了Wigderson教授在计算理论领域的卓越成就&#xff0c;也为当前热门的AI和深度学习…

打破常规,重新定义PMP备考之路

今天我想和大家聊聊一个我们都不陌生的话题——PMP备考。你是不是也在备考的苦海中挣扎&#xff0c;或是听说过各种“速成”的神话&#xff1f;&#x1f914; 最近读到一篇文章&#xff08;来着圣略PMP培训讲师老杨&#xff09;&#xff0c;让我对PMP备考有了新的认识。原来&a…

如何用flutter写一个好的登录页面

编写一个好的登录页面是构建用户友好且安全的移动应用的重要一步。下面是使用Flutter编写一个好的登录页面的一些建议和步骤&#xff1a; 1. 设计用户界面 1.简洁明了的布局&#xff1a;确保界面简洁明了&#xff0c;不要过分复杂&#xff0c;避免用户感到困惑。 2.清晰的输入框…

1、IPEX-LLM(原名BigDL-LLM)环境配置

IPEX-LLM 是一个为Intel XPU (包括CPU和GPU) 打造的轻量级大语言模型加速库&#xff0c;在Intel平台上具有广泛的模型支持、最低的延迟和最小的内存占用。 您可以使用 IPEX-LLM 运行任何 PyTorch 模型&#xff08;例如 HuggingFace transformers 模型&#xff09;。在运行过程中…

Redis的IO模型 和 多线程问题

Redis中的线程和IO模型 什么是Reactor模式 &#xff1f;单线程Reactor模式流程单线程Reactor&#xff0c;工作者线程池多Reactor线程模式 Redis中的线程和IO概述socketI/O多路复用程序文件事件分派器文件事件处理器文件事件的类型总结 多线程问题1. Redis6.0之前的版本真的是单…

05节-51单片机-模块化编程

1.两种编程方式的对比 传统方式编程&#xff1a; 所有的函数均放在main.c里&#xff0c;若使用的模块比较多&#xff0c;则一个文件内会有很多的代码&#xff0c;不利于代码的组织和管理&#xff0c;而且很影响编程者的思路 模块化编程&#xff1a; 把各个模块的代码放在不同的…

学习java时候的笔记(十六)

常用API Math 是一个帮助我们用于进行数学计算的工具类 Math中常用的方法 方法名说明abs(int a)获取参数的绝对值abs(-1) > 1ceil(double b)向上取整1.1 > 2floor(double b)向下取整1.7>1round(float a)四舍五入max(int a, int b)取两个整数的最大值max(2,3) >…