微服务之分布式链路追踪

news2025/2/6 5:48:20

一、概述

1.1背景

在微服务框架中,一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果,每一个前段请求都会形成一条复杂的分布式服务调用链路,链路中的任何一环出现高延时或错误都会引起整个请求最后的失败。

在分布式与微服务场景下,我们需要解决如下问题:

 

在大规模分布式与微服务集群下,如何实时观测系统的整体调用链路情况。

在大规模分布式与微服务集群下,如何快速发现并定位到问题。

在大规模分布式与微服务集群下,如何尽可能精确的判断故障对系统的影响范围与影响程度。

在大规模分布式与微服务集群下,如何尽可能精确的梳理出服务之间的依赖关系,并判断出服务之间的依赖关系是否合理。

在大规模分布式与微服务集群下,如何尽可能精确的分析整个系统调用链路的性能与瓶颈点。

在大规模分布式与微服务集群下,如何尽可能精确的分析系统的存储瓶颈与容量规划。

1.2分布式链路追踪概述

分布式链路追踪技术要解决的问题,分布式链路追踪(Distributed Tracing),就是将一次分布式请求还原成调用链路,进行日志记录,性能监控并将一次分布式请求的调用情况集中展示。比如各个服务节点上的耗时、请求具体到达哪台机器上、每个服务节点的请求状态等等。

1.3Sleuth(弃用了解)

Sleuth 是一个基于 Spring Cloud 的分布式跟踪系统,主要用来解决微服务架构中的分布式链路追踪问题,在分布式系统中,请求往往需要涉及多个服务之间的调用,这时候就需要一种工具来帮助我们进行跟踪和监控。Sleuth 就是这样一种工具,它可以记录下请求在分布式系统中的完整流程,从而方便开发人员进行问题定位和排除。

Sleuth 的工作原理很简单:在服务请求发送过程中,Sleuth 首先会为请求生成一个 Trace ID,Trace ID 是一串唯一标识符,用于唯一标识这个请求,然后在请求的头信息中添加 Trace ID 和 Span ID ,最后将请求发送到相应的服务端。当服务端收到请求后,在请求头信息中取出 Trace ID 和 Span ID,根据这些信息,Sleuth 可以将整个分布式系统中的请求流程记录下来。

Spring Cloud Sleuth不适用于Spring Boot3x及以版本。Sleuth支持的最后一个Spring Boot主要版本是2×。 

1.4Micrometer

  • 官网https://spring.io/projects/spring-cloud-sleuth#overview
  •  github https://github.com/spring-cloud/spring-cloud-sleuth 

 Spring Cloud Sleuth(micrometer)提供了一套完整的分布式链路追踪(Distributed Tracing)
解决方案且兼容支持了zipkin.展现

将一次分布式请求还原成调用链路,进行日志记录和性能监控,并将一次分布式请求的调用情况集中web展示 

1.5Zipkin

官网https://zipkin.io/

Zipkin是一种分布式链路跟踪系统图形化的工具,Zipkin 是 Twitter 开源的分布式跟踪系统,能够收集微服务运行过程中的实时调用链路信息,并能够将这些调用链路信息展示到Web图形化界面上供开发人员分析,开发人员能够从ZipKin中分析出调用链路中的性能瓶颈,识别出存在问题的应用程序,进而定位问题和解决问题。

 安装

docker run -d -p 9411:9411 openzipkin/zipkin

二、实战

2.1环境部署

pom

 <properties>
        
        <micrometer-tracing.version>1.2.0</micrometer-tracing.version>
        <micrometer-observation.version>1.12.0</micrometer-observation.version>
        <feign-micrometer.version>12.5</feign-micrometer.version>
        <zipkin-reporter-brave.version>2.17.0</zipkin-reporter-brave.version>
    </properties>
   <!--micrometer-tracing-bom导入链路追踪版本中心  1-->
            <dependency>
                <groupId>io.micrometer</groupId>
                <artifactId>micrometer-tracing-bom</artifactId>
                <version>${micrometer-tracing.version}</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
            <!--micrometer-tracing指标追踪  2-->
            <dependency>
                <groupId>io.micrometer</groupId>
                <artifactId>micrometer-tracing</artifactId>
                <version>${micrometer-tracing.version}</version>
            </dependency>
            <!--micrometer-tracing-bridge-brave适配zipkin的桥接包 3-->
            <dependency>
                <groupId>io.micrometer</groupId>
                <artifactId>micrometer-tracing-bridge-brave</artifactId>
                <version>${micrometer-tracing.version}</version>
            </dependency>
            <!--micrometer-observation 4-->
            <dependency>
                <groupId>io.micrometer</groupId>
                <artifactId>micrometer-observation</artifactId>
                <version>${micrometer-observation.version}</version>
            </dependency>
            <!--feign-micrometer 5-->
            <dependency>
                <groupId>io.github.openfeign</groupId>
                <artifactId>feign-micrometer</artifactId>
                <version>${feign-micrometer.version}</version>
            </dependency>
            <!--zipkin-reporter-brave 6-->
            <dependency>
                <groupId>io.zipkin.reporter2</groupId>
                <artifactId>zipkin-reporter-brave</artifactId>
                <version>${zipkin-reporter-brave.version}</version>
            </dependency>

yml

# ========================zipkin===================
management:
  zipkin:
    tracing:
      endpoint: http://localhost:9411/api/v2/spans
  tracing:
    sampling:
      probability: 1.0 #采样率默认为0.1(0.1就是10次只能有一次被记录下来),值越大收集越及时。

2.2测试

服务端

@RestController
public class PayMicrometerController
{
    /**
     * Micrometer(Sleuth)进行链路监控的例子
     * @param id
     * @return
     */
    @GetMapping(value = "/pay/micrometer/{id}")
    public String myMicrometer(@PathVariable("id") Integer id)
    {
        return "Hello, 欢迎到来myMicrometer inputId:  "+id+" \t    服务返回:" + IdUtil.simpleUUID();
    }
}

Api接口 

   /**
     * Micrometer(Sleuth)进行链路监控的例子
     * @param id
     * @return
     */
    @GetMapping(value = "/pay/micrometer/{id}")
    public String myMicrometer(@PathVariable("id") Integer id);

客户端

@RestController
@Slf4j
public class OrderMicrometerController
{
    @Resource
    private PayFeignApi payFeignApi;

    @GetMapping(value = "/feign/micrometer/{id}")
    public String myMicrometer(@PathVariable("id") Integer id)
    {
        return payFeignApi.myMicrometer(id);
    }
}

2.3效果

 查看依赖关系

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1598763.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MyBatis操作数据库(3)

其它查询操作 #{}和${} MyBatis参数赋值有两种方式, 咱们前面使用了#{}进行赋值, 接下来来看两者的区别: #{}和${}的使用 1.先看Integer类型的参数: Select("select username, password, age, gender, phone from userinfo where id #{id}") UserInfo queryByI…

OSI七层网络攻击行为及防范手段

2020年3月3日&#xff0c;360安全大脑披露美国中央情报局攻击组织&#xff08;APT-C-39&#xff09;对我国大型互联网公司、政府部门及相关企业进行长达11年的网络攻击渗透&#xff0c;该组织所使用的网络武器和CIA“Vault7”项目中的网络武器完全吻合。如今随着互联网技术的蓬…

RocketMQ 事件驱动:云时代的事件驱动有啥不同?

作者&#xff1a;林清山&#xff08;隆基&#xff09; 前言&#xff1a; 从初代开源消息队列崛起&#xff0c;到 PC 互联网、移动互联网爆发式发展&#xff0c;再到如今 IoT、云计算、云原生引领了新的技术趋势&#xff0c;消息中间件的发展已经走过了 30 多个年头。 目前&a…

图片懒加载的三种方式

方法一:滚动监听 + scrollTop + offsetTop + innerHeight scrollTop:指网页元素被滚动条卷去的部分。 offsetTop:元素相对父元素的位置 innerHeight:当前浏览器窗口的大小。需要注意兼容性问题。 <!DOCTYPE html> <html lang="en"><head>&…

IDEA: Unable to resolve table ‘xxx‘

描述&#xff1a; 在 IDEA 连接到数据库后&#xff0c;SQL 语句提示 Unable to resolve table 表名&#xff0c;且其它字段也飘红报错。 解决&#xff1a; 右键点击数据库&#xff0c;选择 Tools -> Manage Shown Schemas... 勾选你所使用的数据库即可&#xff1a; 1、2、3…

软考 系统架构设计师系列知识点之大数据设计理论与实践(6)

接前一篇文章&#xff1a;软考 系统架构设计师系列知识点之大数据设计理论与实践&#xff08;5&#xff09; 所属章节&#xff1a; 第19章. 大数据架构设计理论与实践 第3节 Lambda架构 本文部分内容参考&#xff1a; Lambda架构 - 简书 特此致谢&#xff01; 19.3.3 Lambda…

【Ansible自动化运维】Ansible入门基础信息【安装配置、常用命令与模块】

介绍安装配置注意事项yum安装验证安装配置host配置主机清单配置主控端被控端 常用模块命令组成command模块shell模块copy模块script模块 日志信息最后 介绍 Ansible 是一个开源 IT 自动化引擎&#xff0c;可自动执行供应、配置管理、应用程序部署、编排和许多其他 IT 流程。它可…

深入浅出学习切片LOD——ArcGIS server模拟缓存切片(影像快显)

一、第一次实践 原理 免切片实现影像服务的模拟切片&#xff0c;主要原理是接收前端传过来的xyz(行列层级)以及切片方案&#xff0c;计算出该请求的切片的四至经纬度信息&#xff0c;通过mapserver的exportImage接口&#xff0c;传入每个模拟切片的四至经纬度信息得到图片返回…

小程序视频下载器

下载高手&#xff0c;让小程序视频下载变得前所未有的简单&#xff01;专为非编程专业人士设计&#xff0c;该工具免去了繁琐的抓包软件学习过程&#xff0c;无需深入研究Fiddler或Charles的配置。它优化了视频、图片和音频资源的下载&#xff0c;提供直观的操作界面&#xff0…

大世界基尼斯见证辉煌,云仓酒庄首届酒类培训新高度诞生

近日&#xff0c;一场规模盛大的酒类培训盛会&#xff0c;在云仓酒庄的精心组织下圆满落幕。此次培训活动以其卓着的成果和盛大的规模&#xff0c;创下了大世界基尼斯纪录&#xff0c;为酒类培训领域树立了新的标杆。这一成就的取得&#xff0c;背后是云仓酒庄团队无数的心血与…

修改taro-ui-vue3的tabs组件源码增加数字标签

需求&#xff1a;taro-ui-vue3的tabs组件上增加数字标记 步骤一&#xff1a;node_modules文件夹下找到taro-ui-vue3/lib/tabs/index.js 把173行的这一段替换成下面这段&#xff0c;然后写上样式 default: () > item.number ? [h(View, {class: at-tabs__item_in}, {defau…

linux应急响应基础命令

一、cpu使用率-top top -c -o %CPU -c 显示进程的命令行参数 -o 按照CPU占用从大到小排序二、用户信息 1、查看系统所有用户信息 [rootcentos7 ~]# cat /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bin:/bin:/sbin/nologin daemon:x:2:2:daemon:/sbin:/sbin/nol…

有道词典网页版接口分析与爬虫研究

说明&#xff1a;仅供学习使用&#xff0c;请勿用于非法用途&#xff0c;若有侵权&#xff0c;请联系博主删除 作者&#xff1a;zhu6201976 一、目标站点 有道词典网页版&#xff1a;网易有道 二、目标接口 url&#xff1a;https://dict.youdao.com/jsonapi_s?doctypejson&…

JUC专题——Java并发机制的底层实现原理

本文部分内容节选自《Java并发编程的艺术》 volatile 的应用 volatile 是轻量级的 synchronized, 它在多处理器开发中保证了共享变量的 “可见性”. 可见性的意思是当一个线程修改一个共享变量时, 另外一个线程能读到这个修改的值. 如果 volatile变量修饰符使用恰当的话, 它比…

面试算法-173-二叉树的直径

题目 给你一棵二叉树的根节点&#xff0c;返回该树的 直径 。 二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root 。 两节点之间路径的 长度 由它们之间边数表示。 示例 1&#xff1a; 输入&#xff1a;root [1,2,3,4,…

linux的线程概念

目录 1.原理 2.线程的周边概念 3.创建线程的接口 1.pthread_create 2.pthread_join 3.pthread_detach 4.终止线程 5.C11封装的多线程库 4.线程库的大概结构 5.__thread&#xff08;只能修饰内置类型&#xff09; 6.线程的互斥 1.了解原理 2.加锁 1.接口 2.代码示…

护网 | 如何从蓝队初级进化到蓝队中级

了解应急响应的流程 1&#xff09;首先判断服务器资产、影响范围以及严重程度&#xff0c;确认有没有必要将服务器下线隔离&#xff0c;然后根据服务器的失陷时间和态势感知的告警&#xff0c;判断是由什么漏洞进来的 2&#xff09;其次就是取证排查阶段&#xff0c;如果是w…

get_program_dir() Ai回答是一个函数,用于获取当前程序.exe的目录。

#include <iostream> #include <filesystem>std::string get_program_dir() {return std::filesystem::current_path().string(); }int main() {// 调用函数获取当前程序的目录std::string program_dir get_program_dir();std::cout << "当前程序的目录…

认识一下RAG

1.RAG技术背景与挑战 2.RAG的核心概念 3.RAG的工作流程与架构 4.RAG的优化方法 RAG的提出 •Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks是一篇重要的论文(2020年5月) •REALM: Retrieval-Augmented Language Model Pre-Training (2020)就将BERT预训练模…

Go微服务: 服务限流原理, 负载均衡与API网关

微服务里面的限流 (uber/limit)概述 go 微服务保稳三剑客: 熔断&#xff0c;限流&#xff0c;负载均衡限流的作用 限制流量&#xff0c;在服务端生效 注意&#xff1a;熔断是客户端生效 保护后端服务 餐厅吃饭排队的问题&#xff0c;提供凳子&#xff0c;让等候&#xff0c;这就…