FPGA基于VCU的H265视频压缩,HDMI2.0输入,支持4K60帧,提供工程源码+开发板+技术支持

news2024/11/26 17:51:48

目录

  • 1、前言
    • 免责声明
  • 2、相关方案推荐
    • 我这里已有的视频图像编解码方案
  • 3、详细设计方案
    • 设计框图
    • FPGA开发板
    • 视频输入
    • Video PHY Controller
    • HDMI 1.4/2.0 Receiver Subsystem
    • Video Processing Subsystem
    • Video Frame Buffer Write
    • Zynq UltraScale+ VCU
    • PetaLinux 系统制作
    • VLC播放器
    • 工程源码架构
  • 4、Vivado工程源码详解
  • 5、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 6、上板调试验证并演示
    • 准备工作
    • 配置Xshell
    • 配置开发板IP
    • 配置输入视频
    • 配置H265视频压缩
    • 配置VLC播放器
    • VLC播放H265码流视频演示
  • 7、福利:工程源码获取

FPGA基于VCU的H265视频压缩,支持4K60帧,提供工程源码+开发板+技术支持

1、前言

Xilinx Zynq UltraScale+ ZUEV系列FPGA自带VCU视频编解码功能,VCU有以下特点:
• 支持多达 32 个流的同步编码和解码 (最大聚合带宽为3840x2160 @ 60fps)
• 低时延速率控制
• 灵活的速率控制:CBR、 VBR 和常量 QP
• 支持分辨率高达 4K UHD @ 60 Hz 的同步编码和解码
• 支持 8 K UHD (~15 Hz) 的降低帧速率

本设计采用Zynq UltraScale+MPSoCs–XCZU4EV的高端型号FPGA做基于VCU的H265视频压缩,输入视频源使用笔记本电脑,接收显示设备使用4K显示器;输入视频首先接入板载的HDMI2.0输入接口,然后经过板载的PS8409或其他同等功能的芯片做均衡处理;然后输入差分视频信号直接连到FPGA的GT BANK2上;然后调用Xilinx官方的Video PHY Controller IP核接收4K输入视频并做解串工作,将原来高速串行信号解为3路20bit的AXI4-Stream并行数据,该IP需使用FPGA GT资源;然后调用Xilinx官方的HDMI 1.4/2.0 Receiver Subsystem IP核做4K 高清视频的解码工作,IP 同时解码出音频流和视频流,以AXI4-Stream流输出;然后然后调用Xilinx官方的Video Processing Subsystem IP核做图像缩放操作;然后然后调用Xilinx官方的Video Frame Buffer Write IP核将图像写入PS侧的DDR4中缓存;然后然后调用Xilinx官方的Zynq UltraScale+ VCU IP核读出图像并作H265压缩;至此,整个FPGA工程已经完成;然后编译工程,导出.xsa文件,并在PetaLinux中做嵌入式Linux启动文件,在Linux软件设计中,将压缩的H265视频码流通过TCP协议从网口发送出去,在PC端可通过LVC播放器播放压缩的H265码流;然后将做好的Linux启动文件复制到TF卡中,插上TF卡即可启动Linux系统,在Xshell中即可操作终端进行配置;

本设计提供资源如下:
• 提供一套XCZU4EV开发板
• 提供一套Vivado2020.2版本的工程源码
• 提供一套编译好的固件,可启动Linux系统

本博客详细描述了Xilinx系列Zynq UltraScale+MPSoCs–XCZU4EV的高端型号FPGA做基于VCU的H265视频压缩的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网以及其他开源免费获取渠道等等),若大佬们觉得有所冒犯,请私信批评教育;部分模块源码转载自上述网络,版权归原作者所有,如有侵权请联系我们删除;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我这里已有的视频图像编解码方案

我这里有图像的JPEG解压缩、JPEG-LS压缩、H264编解码、H265编解码以及其他方案,后续还会出更多方案,我把他们整合在一个专栏里面,会持续更新,专栏地址:
直接点击前往

3、详细设计方案

设计框图

本设计使用的工程详细设计方案框图如下:
在这里插入图片描述

FPGA开发板

本UP主有下列FPGA开发板均可实现4K@60Hz视频 HDMI2.0的收发,本博客仅仅是介绍了其中Zynq UltraScale+系列的开发板实现方案,需要其他方案的朋友可以在博客末尾联系到本UP,现有开发板方案如下:
1–>Xilinx Kintxe7 FPGA开发板;
2–>Xilinx Kintxe7 UltraScale FPGA开发板;
3–>Xilinx Kintxe7 UltraScale+ FPGA开发板;
4–>Xilinx Virtxe7 FPGA开发板;
5–>Zynq UltraScale FPGA开发板;
6–>Zynq UltraScale+ FPGA开发板(本博客使用到的);
关于本博客使用的这款开发板详细信息,请参考我之前的博客,对这块开发板感兴趣的朋友可以咨询本UP获得;博客链接如下:
点击直接前往

视频输入

工程源码1的视频输入为笔记本电脑,前提是你的笔记本电脑要能够输出4K@60Hz分辨率才行,可通过查看显示驱动版本确定是否支持4K@60Hz分辨率,参考如下:
在这里插入图片描述
一般驱动版本在20.0以上就是支持输出4K的;

Video PHY Controller

用XIlinx方案做4K HDMI2.0视频收发必须要用到此IP,Video PHY Controller IP核主要做解串和串化的工作,利用FPGA GT资源,即利用GTH;在接收端接收4K 高清视频并做解串工作,将原来高速串行信号解为3路20bit的AXI4-Stream并行数据,在发送端做4K 高清视频并做串化工作,将原3路20bit的AXI4-Stream并行数据串化为高速串行信号;Video PHY Controller配置如下:
在这里插入图片描述
关于Video PHY Controller收发HDMI2.0的用法,请参考我之前的博客,博客地址如下:
点击直接前往

HDMI 1.4/2.0 Receiver Subsystem

用XIlinx方案做4K HDMI视频收发必须要用到此IP,4K HDMI输入视频经过Video PHY Controller解串后输入HDMI 1.4/2.0 Receiver Subsystem IP,该IP做4K 高清视频的解码工作,IP 同时解码出音频流核视频流,以AXI4-Stream流输出;HDMI 1.4/2.0 Receiver Subsystemr配置如下:
在这里插入图片描述
关于HDMI 1.4/2.0 Receiver Subsystem接收HDMI2.0的用法,请参考我之前的博客,博客地址如下:
点击直接前往

Video Processing Subsystem

这里介绍一下Video Processing Subsystem;
Video Processing Subsystem有缩放、去隔行、颜色空间转换等功能,这里仅使用图像缩放功能;其特点如下:
适用于Xilinx所有系列的FPGA器件;
支持最大分辨率:8K,即可以处理高达8K的视频;
输入视频格式:AXI4-Stream;
输出视频格式:AXI4-Stream;
需要SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;
模块占用的FPGA逻辑资源更小,相比于自己写的HLS图像缩放而言,官方的Video Processing Subsystem资源占用大约减小30%左右,且更高效:
Video Processing Subsystem逻辑资源如下,请谨慎评估你的FPGA资源情况;
在这里插入图片描述
Video Processing Subsystem IP配置如下:这里配置为仅缩放模式,最高4K;
在这里插入图片描述
在Linux设计中可以对输入视频进行缩放,通过终端指令配置缩放视频分辨率;

关于Video Processing Subsystem图像缩放的详细用法,请参考我之前的博客,博客地址如下:
点击直接前往

Video Frame Buffer Write

Video Frame Buffer Write相当于精简版的VDMA,只具有视频写入DDR的功能,与VDMA相比具有YUV视频写入的功能,配置如下:
在这里插入图片描述
在Linux设计中可以对视频写入的基地址进行配置,通过终端指令配置;

Zynq UltraScale+ VCU

Zynq UltraScale+ VCU是Xilinx Zynq UltraScale+ ZUEV系列FPGA才有的IP,可以实现最高4K60帧的视频压缩和解压,IP的官方文档是《PG252》,读者可以自行前往阅读,Zynq UltraScale+ VCU配置如下:
在这里插入图片描述
输入视频格式为YUV420,最高分辨率配置为4K60帧;

PetaLinux 系统制作

PetaLinux版本为2020.2,提供一套编译好的固件,文件复制到TF卡后,可启动Linux系统;

VLC播放器

压缩后的H265码流可通过VLC播放器播放,关于VLC播放器的安装与使用,请参考下面的博客链接:
点击直接前往

工程源码架构

工程源码架构包括vivado Block Design逻辑设计和PetaLiux软件设计;
Block Design逻辑设计架构截图如下:
在这里插入图片描述
综合后的源码架构如下:
在这里插入图片描述

4、Vivado工程源码详解

开发板FPGA型号:Xilinx–Zynq UltraScale+MPSoCs–xczu4ev-sfvc784-2-i;
开发环境:Vivado2020.2;
输入:笔记本电脑,HDMI2.0,最高分辨率4K @60Hz;
输出:RJ45网口;
视频压缩方案:Zynq UltraScale+ VCU–H265;
工程源码架构请参考前面第3章节中的《工程源码架构》小节;
工程作用:此工程目的是让读者掌握FPGA基于VCU的H265视频压缩的设计能力,以便能够移植和设计自己的项目;
工程的资源消耗和功耗如下:

5、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

6、上板调试验证并演示

准备工作

FPGA开发板,推荐使用本博的开发板;
笔记本电脑,仅作输入源;
带显卡的电脑主机,显卡越贵越好;
网线;
开发板连接如下:
在这里插入图片描述
插上TF卡,然后将串口线和网线连接到电脑,安装串口驱动,资料包中已经提供,上电;

配置Xshell

我们使用Xshell连接开发板模拟Linux终端的操作,Xshell配置如下:
在这里插入图片描述
在这里插入图片描述

配置开发板IP

首先需要配置开发板IP,配置为和你的电脑在同一网段即可,因为开发板压缩的码流视频需要发送给电脑;首先查看你的电脑IP,以我的为例如下:
在这里插入图片描述
然后在Xshell依次输入如下指令配置配置开发板IP,具体配置要根据你的电脑IP而定,这里只是以我的为例,如果这一步都看不懂建议不要往下看了。。。
• 终端指令:ifconfig
• 终端指令:ifconfig ethe 169.254.86.135
如下:
在这里插入图片描述
然后ping电脑IP,一定要能ping通,不然后面的操作就没意义了,如下:
• 终端指令:ping 169.254.86.136
在这里插入图片描述

配置输入视频

需要检测输入视频的格式,配置视频缩放,如下:
• 终端指令:media-ctl -p -d /dev/media0
在这里插入图片描述
可以看到我的输入视频为1080P,其中 RBG888_1X24/1920x1080为 HDMI 输入的视频格式,后面配 VPSS 参数会用到,接着配置视频缩放,如下:
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:0 [fmt:RBG888_1X24/1920x1080 field:none]”
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:1 [fmt:RBG888_1X24/1920x1080 field:none]”
在这里插入图片描述
如果输入的视频为4K,则指令变为如下:
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:0 [fmt:RBG888_1X24/3840x2160 field:none]”
• 终端指令:media-ctl -d /dev/media0 -V ““a0080000.v_proc_ss”:1 [fmt:RBG888_1X24/3840x2160 field:none]”

配置H265视频压缩

输入如下指令:
• 终端指令:gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=1920, height=1080, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265,profile=main, alignment=au ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.3.125 port=5004
注意!!!
注意!!!
注意!!!
上述指令中的《udpsink host=192.168.3.125 port=5004》
这里的IP是根据我自己的电脑配置的,你的电脑请根据实际情况修改;端口号5004为固定值;
在这里插入图片描述
如果输入的视频为4K,则指令变为如下:
• 终端指令:gst-launch-1.0 v4l2src device=/dev/video0 io-mode=4 ! video/x-raw, format=NV12, width=3840, height=2160, framerate=60/1 ! omxh265enc qp-mode=auto gop-mode=basic gop-length=60 b-frames=0 target-bitrate=60000 num-slices=8 control-rate=constant prefetch-buffer=true low-bandwidth=false filler-data=true cpb-size=1000 initial-delay=500 periodicity-idr=60 ! video/x-h265,profile=main, alignment=au ! queue ! mpegtsmux alignment=7 name=mux ! rtpmp2tpay ! udpsink host=192.168.3.125 port=5004

配置VLC播放器

开发板网线连接电脑,打开VLC播放器,配置如下:
在这里插入图片描述
在这里插入图片描述
这里一定要注意:这里的IP是根据我自己的电脑配置的,你的电脑请根据实际情况修改;
注意!!!
注意!!!
注意!!!
电脑端一定要用有显卡的电脑,不要用笔记本电脑,不然延时很大,根本无法播放。。。

VLC播放H265码流视频演示

VLC播放H265码流视频演示如下:

FPGA实现H265视频压缩

7、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1587622.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ElasticSearch的数据同步【Java实现】

文章目录 1、思路分析1.1、同步调用1.2、异步通知1.3、监听binlog1.4、如何选择 2、实现数据同步2.1、思路2.2、demo2.3、声明交换机、队列1)引入依赖2)声明队列交换机名称3)声明队列交换机 2.4、发送MQ消息2.5、接收MQ消息 3、代码链接分享 …

Quartz + SpringBoot 实现分布式定时任务

文章目录 前言一、分布式定时任务解决方案二、Quartz是什么?1.quartz简介2.quartz的优缺点 二、Quartz分布式部署总结 前言 因为应用升级,由之前的单节点微服务应用升级为集群微服务应用,所以之前的定时任务Spring Scheduled不再适用了&…

蓝桥备赛——组合数、其他技巧

对字符串进行permutations排列组合 from itertools import permutations a abc #对字符串进行permutations排列组合 for i in permutations(a,3):x .join(i)print (x,end ) print (\n------------------------------------) permutations后面的参数,第一个表示…

Canal 扩展篇

1.Canal介绍 GitHub - alibaba/canal: 阿里巴巴 MySQL binlog 增量订阅&消费组件 Canal 主要用途是基于 MySQL 数据库增量日志解析,提供增量数据订阅和消费,工作原理如下: Canal 模拟 MySQL slave 的交互协议,伪装自己为 M…

【原创】springboot+mysql宠物管理系统设计与实现

个人主页:程序猿小小杨 个人简介:从事开发多年,Java、Php、Python、前端开发均有涉猎 博客内容:Java项目实战、项目演示、技术分享 文末有作者名片,希望和大家一起共同进步,你只管努力,剩下的交…

Redis(二十)五大经典类型源码

文章目录 面试题源码核心Redis基本的数据结构(骨架)Redis数据库的实现Redis服务端和客户端实现其他 K-V实现怎样实现键值对(key-value)数据库的传统五大基本数据类型和新五大数据类型 5大数据结构底层C语言源码分析示例redisObject五大数据结构解析定义Debug Object keyString …

01 SQL基础 -- 初识数据库与安装

一、初识数据库 数据库是将大量数据保存起来,通过计算机加工而成的可以进行高效访问的数据集合。该数据集合称为数据库(Database, DB)。用来管理数据库的计算机系统称为数据库管理系统(Database Management System, DBMS) 1.1 DBMS 的种类 DBMS 主要通过数据的保存格式…

【WEEK7】 【DAY3】JDBC—数据库驱动【中文版】

2024.4.10 Wednesday 目录 10.JDBC10.1.数据库驱动10.1.1.驱动10.1.2.JDBC10.1.3.第一个JDBC程序10.1.3.1.创建一个普通项目10.1.3.2.导入数据库驱动10.1.3.3.编写测试代码10.1.3.4.DriverManager10.1.3.5.URL10.1.3.6.Connection10.1.3.7.Statement执行SQL的对象10.1.3.8.Res…

[大模型]Atom-7B-chat网页例子

# Atom-7B-chat## 环境准备在[autodl](https://www.autodl.com/)平台中租一个3090等24G显存的显卡机器,如下图所示镜像选择PyTorch-->2.0.0-->3.8(ubuntu20.04)-->11.8![Alt text](images/image-1.png)接下来打开刚刚租用服务器的JupyterLab,并…

Codeforces Round 937 (Div. 4)(A~E)

A. Stair, Peak, or Neither? 根据题意来就可以了 #include <bits/stdc.h> using namespace std;void solve(){int a,b,c;cin>>a>>b>>c;if(a<b and b<c){cout<<"STAIR"<<endl;}else if(a<b and b>c){cout<<…

Docker部署SpringBoot+Vue前后端分离项目

文章目录 1. 安装Docker1. 1 卸载旧版Docker1.2 配置yum仓库1.3 安装Docker1.4 添加自启动配置1.5 配置阿里云镜像加速1.6 测试 2. 安装Nginx2.1 拉取镜像2.2 安装Nginx2.3 测试 3. 安装MySQL3.1 拉取镜像3.2 安装MySQL3.3 连接MySQL 4. 部署SpringBoot项目4.1 Maven打包4.2 编…

算法——栈

. - 力扣&#xff08;LeetCode&#xff09; 给你一个以字符串表示的非负整数 num 和一个整数 k &#xff0c;移除这个数中的 k 位数字&#xff0c;使得剩下的数字最小。请你以字符串形式返回这个最小的数字。 class Solution { public:string removeKdigits(string num, int k…

LeetCode-热题100:64. 最小路径和

题目描述 给定一个包含非负整数的 m x n 网格 grid &#xff0c;请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。 **说明&#xff1a;**每次只能向下或者向右移动一步。 示例 1&#xff1a; 输入&#xff1a; grid [[1,3,1],[1,5,1],[4,2,1]]…

二叉树:小红的完全二叉树构造

题目描述 小红想构造一个总共 n 个节点完全二叉树&#xff0c;该二叉树满足以下两个性质&#xff1a; 1. 所有节点的权值值为 1 ~ n 的一个排列。 2. 除了根节点以外&#xff0c;每个节点的权值和它父亲的权值的乘积为偶数。 请你帮小红构造出这个二叉树&#xff0c;并按层序遍…

Handler——小白能懂的原理,老鸟需要的面经

1.机制学习 1.1Handler定义 发送并处理 与线程的消息队列关联的Message和Runnable 1.2基本用法 1、Message.obtain() 从消息池取得Message 2、Handler().sendMessage(msg) 发送消息 3、Handler().post 将Runnable包装成Message发送 以下提供一个结构代码 import android.os.H…

嵌入式linux系统链接腾讯云的方法

各位开发者大家好,今天主要给大家分享一个,如何使用linux系统链接腾讯云的方法,因为微信小程序越来越普遍,链接腾讯云也是日常必须掌握的一个技能。 第一:【实验目的】 1、linux 系统连接腾讯云的方法 第二:【实验原理】 涉及到原理图添加原理图 2、linux开发板 …

AI 助力问题驱动式学习

文章概括&#xff1a; AI 已经带来学习方式的改变&#xff0c;降低了我们学习知识的难度&#xff0c;加快了我们解决问题的速度。 本文介绍如何通过 AI 工具&#xff0c;通过直接对大模型、对 Agent、对文档、对知识库提问的方式&#xff0c;快速学习知识快速解决问题等。 本…

Vue3学习03 pinia

Vue3学习 pinia pinia一个简单效果搭建 pinia 环境存储读取数据示例 修改数据 (三种方式)storeToRefsgetters$subscribestore组合式写法 pinia 在vue2中使用vuex&#xff0c;在vue3中使用pinia。 集中式状态管理&#xff0c;&#xff08;状态数据&#xff09;。多个组件共享数…

vue简单使用二(循环)

目录 属性绑定 if判断&#xff1a; for循环&#xff1a; 属性绑定 代码的形式来说明 三元表达式的写法&#xff1a; if判断&#xff1a; for循环&#xff1a; 完整代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"…

基于web的个人网站的设计与实现(内附设计LW + PPT+ 源码下载)

基于web的个人网站的设计与实现&#xff08;内附设计LW PPT 源码下载&#xff09; 摘 要 随着社会及个人社交应用平台的飞速发展&#xff0c;人们的沟通成本逐渐降低&#xff0c;互联网信息的普及也进一步提升了人们对于信息的需求度&#xff0c;通过建立个人网站的方式来…