VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型

news2024/11/29 22:49:27

创新点:二次分解 + 多头注意力特征融合

 往期精彩内容:

时序预测:LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客

风速预测(一)数据集介绍和预处理-CSDN博客

风速预测(二)基于Pytorch的EMD-LSTM模型-CSDN博客

风速预测(三)EMD-LSTM-Attention模型-CSDN博客

风速预测(四)基于Pytorch的EMD-Transformer模型-CSDN博客

风速预测(五)基于Pytorch的EMD-CNN-LSTM模型-CSDN博客

风速预测(六)基于Pytorch的EMD-CNN-GRU并行模型-CSDN博客

风速预测(七)VMD-CNN-BiLSTM预测模型-CSDN博客

CEEMDAN +组合预测模型(BiLSTM-Attention + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(CNN-LSTM + ARIMA)-CSDN博客

CEEMDAN +组合预测模型(Transformer - BiLSTM+ ARIMA)-CSDN博客

 CEEMDAN +组合预测模型(CNN-Transformer + ARIMA)-CSDN博客

多特征变量序列预测(一)——CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(二)——CNN-LSTM-Attention风速预测模型-CSDN博客

多特征变量序列预测(三)——CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(四)Transformer-BiLSTM风速预测模型-CSDN博客

多特征变量序列预测(五) CEEMDAN+CNN-LSTM风速预测模型-CSDN博客

多特征变量序列预测(六) CEEMDAN+CNN-Transformer风速预测模型-CSDN博客

多特征变量序列预测(七) CEEMDAN+Transformer-BiLSTM预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-BiLSTM-Attention的预测模型-CSDN博客

基于麻雀优化算法SSA的CEEMDAN-Transformer-BiGRU预测模型-CSDN博客

多特征变量序列预测(八)基于麻雀优化算法的CEEMDAN-SSA-BiLSTM预测模型-CSDN博客

多特征变量序列预测(九)基于麻雀优化算法的CEEMDAN-SSA-BiGRU-Attention预测模型-CSDN博客

多特征变量序列预测(10)基于麻雀优化算法的CEEMDAN-SSA-Transformer-BiLSTM预测模型-CSDN博客

超强预测算法:XGBoost预测模型-CSDN博客

VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客

VMD + CEEMDAN 二次分解,CNN-LSTM预测模型-CSDN博客

基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客

多特征变量序列预测 -TCN 预测模型-CSDN博客

VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型-CSDN博客

交叉注意力融合时空特征的TCN-Transformer并行预测模型-CSDN博客

风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客

前言

本文基于前期介绍的电力变压器(文末附数据集),介绍一种基于VMD+CEEMDAN二次分解的Transformer-BiGRU预测模型,以提高时间序列数据的预测性能。电力变压器数据集的详细介绍可以参考下文:

电力变压器数据集介绍和预处理_ett small数据集-CSDN博客

1 二次分解与数据集制作

1.1 导入数据

1.2 VMD分解

第一步,根据不同K值条件下, 观察中心频率,选定K值;从K=4开始出现中心频率相近的模态,出现过分解,故模态数 K 选为4。

第二步,分解可视化

1.3 样本熵

样本熵是一种用于衡量序列复杂度的方法,可以通过计算序列中的不确定性来评估其复杂性。样本熵越高,表示序列的复杂度越大。

通过对VMD分解出四个分量的样本熵计算,高样本熵有着更丰富的不可控信息,为进一步提取分量中的有效信息,对VMD的最高熵值项,进行CEEMDAN分解

1.4 CEEMDAN分解

对 VMD分解出的 最高熵值项分量进行再分解

1.5 数据集制作

先合并VMD和CEEMDAN分解的分量,按照9:1划分训练集和测试集

2 基于Pytorch的 Transformer-BiGRU 预测模型

2.1 定义Transformer-BiGRU预测模型

注意:输入风速数据形状为 [64, 7, 14], batch_size=64,7代表序列长度(滑动窗口取值),  维度14维代表合并分量的维度。

2.2 设置参数,训练模型

50个epoch,MSE 为0.000402,VMD+CEEMDAN二次分解的Transformer-BiGRU预测效果良好,二次分解后,能够提取序列中更多的信息,Transformer-BiGRU模型能够提取出分量特征的时空信息,预测效果提升明显,性能优越,适当调整模型参数,还可以进一步提高模型预测表现。

注意调整参数:

  • 可以修改BiGRU层数和每层维度数;

  • 调整Transformer编码器层数和注意力维度数、多头注意力头数,增加更多的 epoch (注意防止过拟合)

  • 可以改变滑动窗口长度(设置合适的窗口长度)

3 模型评估与可视化

3.1 结果可视化

3.2 模型评估

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
#代码和数据集:https://mbd.pub/o/bread/ZZ2WlJdv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1586485.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CSGO游戏搬砖,落袋为安才是王道

1.市场燃了,都在赚钱,谁在赔钱? 首先要分清“纸面富贵”和“落袋为安”。市场燃了,你库存里的渐变大狙从5000直接涨到了1W,你赚到5000了吗?严格讲,你需要把库存里的渐变大狙卖出去,…

ruoyi-nbcio-plus基于vue3的flowable的支持自定义业务流程处理页面detail.vue的升级修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…

Training - PyTorch Lightning 分布式训练的 global_step 参数 (accumulate_grad_batches)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/137640653 在 PyTorch Lightning 中,pl.Trainer 的 accumulate_grad_batches 参数允许在执行反向传播和优化器步骤之前&…

priority_queue的使用以及模拟实现

前言 上一期我们对stack和queue进行了使用的介绍,以及对底层的模拟实现!以及容器适配器做了介绍,本期我们在来介绍一个容器适配器priority_queue! 本期内容介绍 priority_queue的使用 仿函数介绍 priority_queue的模拟实现 什么…

2024年3月文章一览

2024年3月编程人总共更新了12篇文章: 1.2024年2月文章一览 2.Programming Abstractions in C阅读笔记:p308-p311 3.Programming Abstractions in C阅读笔记:p312-p326 4.Programming Abstractions in C阅读笔记:p327-p330 5.…

更改el-cascade默认的value和label的键值

后端返回的树结构中,label的key不是el-cascade默认的label,我需要改成对应的字段,但是一直没有成功,我也在文档中找到了说明,但是我没注意这是在props中改,导致一直不成功 这是我一开始错误的写法&#xf…

超越ChatGPT,国内快速访问的强大 AI 工具 Claude

claude 3 opus面世后,网上盛传吊打了GPT-4。网上这几天也已经有了许多应用,但竟然还有很多小伙伴不知道国内怎么用gpt,也不知道怎么去用这个据说已经吊打了gpt-4的claude3。 今天我们想要进行的一项尝试就是—— 用claude3和gpt4&#xff0c…

互联网大厂ssp面经(操作系统:part1)

1. 什么是进程和线程?它们之间有什么区别? a. 进程是操作系统中运行的一个程序实例。它拥有独立的地址空间和资源,可以独立执行。 b. 线程是进程内的一个执行单元,一个进程可以包含多个线程。 c. 线程共享进程的资源,…

liunx系统发布.net core项目

liunx系统发布.net core项目 准备.net6程序运行环境部署nginx,通过一个地址既能访问web api,又能访问web项目有一个客户把web api放到docker中,想通过nginx转发,nginx也支持配置多个程序api接口的其它 liunx系统:cento…

程序员生产力工具推荐

1.SSH客户端 XTerminal Xterminal - 更好用的开发工具,但不止于(SSH/控制台/More) 有着比XShell好看的多的界面,免费版使用起来绰绰有余。 2.文件内容搜索工具 FileLocator FileLocator Pro 专业全文检索工具文件搜索软件丨中文网站特价购买 everyth…

Excel 记录单 快速录入数据

一. 调出记录单 ⏹记录单功能默认是隐藏的,通过如下如图所示的方式,将记录单功能显示出来。 二. 录入数据 ⏹先在表格中录入一行数据,给记录单一个参考 ⏹将光标至于表格右上角,然后点击记录单按钮,调出记录单 然后点…

Terraform 状态不同步处理

背景 在使用 Terraform 创建 TencentCloud TKE 的时候,手贱把 node pool 删掉了。导致执行 destroy, plan 都会报错。 │ Error: [TencentCloudSDKError] CodeInternalError.UnexpectedInternal, Messagerelated node pool query err(get node pool failed: [E501…

kaggle 泰坦尼克号1(根据男女性存活率)

kaggle竞赛 泰坦尼克号 流程 下载kaggle数据集导入所要使用的包引入kaggle的数据集csv文件查看数据集的大小和长度去除冗余数据建立特征工程导出结果csv文件 1.下载kaggle数据集 2.导入所要使用的包 import pandas as pd import numpy as np import matplotlib.pyplot as …

2024.4.12蚂蚁庄园今日答案:豆腐在烹调时容易碎有什么办法可以避免?

原文来源:蚂蚁庄园今日答案 - 词令 蚂蚁庄园是一款爱心公益游戏,用户可以通过喂养小鸡,产生鸡蛋,并通过捐赠鸡蛋参与公益项目。用户每日完成答题就可以领取鸡饲料,使用鸡饲料喂鸡之后,会可以获得鸡蛋&…

构建高效网络:深入理解正向与反向代理的作用与配置

正向代理 如果把局域网外的互联网环境想象成一个巨大的资源库,则局域网中的客户端要访问互联网则需要通过代理服务器来访问,这种代理成为正向代理。 示例: 用户想要访问 https://chensir.ink (目标服务器)&#xff0…

vivado 在硬件中调试逻辑设计

在硬件中调试逻辑设计 设计中包含调试核后 , 您可使用运行时间逻辑分析器功能来对硬件中的设计进行调试。 使用 Vivado Logic Analyzer 进行设计调试 Vivado Logic Analyzer 功能可用于与设计中运行的新 ILA 、 VIO 和 JTAG-to-AXI Master 调试核进行交互。…

02 Windows操作系统密钥激活流程

Windows系统的激活流程通常包括以下步骤: AI步骤 1. 购买正版产品密钥:在正式激活Windows系统之前,你需要购买一个合法的产品密钥。你可以通过Microsoft官方网站或授权的零售商购买密钥。 2. 输入产品密钥:在购买后,你…

1.8V LDO电路 ➕1.2V bandgap电路

1.8V LDO电路 ➕1.2V bandgap电路(WX:didadidadidida313,加我备注:CSDN LDO,谢绝白嫖哈) 1.8V LDO电路 ➕1.2V bandgap电路,基于tsmc180nm工艺库 带设计仿真报告,非常适合新手入门! 本文采用…

【智能算法应用】灰狼算法求解TSP问题

目录 1.算法原理2.TSP数学模型3.结果展示4.参考文献 1.算法原理 【智能算法】灰狼算法(GWO)原理及实现 2.TSP数学模型 旅行商问题(TSP)是一种著名的组合优化问题,它涉及寻找给定一组城市及其之间的距离或成本&#…

室内定位中文综述阅读

1 室内高精度定位技术总结与展望 [4]柳景斌,赵智博,胡宁松等.室内高精度定位技术总结与展望[J].武汉大学学报(信息科学 版),2022,47(07):997-1008.DOI:10.13203/j.whugis20220029. 1.1.1 WiFi‐RTT定位 2016 年 12 月,随着新版 IEEE802.11 标准的公布&#xff0c…