什么是生成式AI?有哪些特征类型

news2025/3/1 4:55:51

生成式AI是人类一种人工智能技术,可以生成各种类型的内容,包括文本、图像、音频和合成数据。那么什么是人工智能?人工智能和机器学习之间的区别是什么?有哪些技术特征?

人工智能是一门学科,是计算机科学的一个分支,研究智能代理的创建,这些智能代理是可以推理、学习和自主行动的系统。

从本质上讲,人工智能与构建像人类一样思考和行动的机器的理论和方法有关。在这个学科中,机器学习ML,它是人工智能的一个领域。它是根据输入数据训练模型的程序或系统,经过训练的模型可以从新的或从未见过的数据中做出有用的预测,这些数据来自于训练模型的统一数据。

机器学习赋予计算机无需显示编程即可学习的能力。最常见的两类机器学习模型是无监督和监督ML模型。两者之间的主要区别在于,对于监督模型,我们有标签,标记数据是带有名称、类型或数字等标签的数据,无监督数据是没有标记的数据。

该图是监督模型可能尝试解决问题的事例。

例如,假设您是一家餐馆的老板,你有账单金额的历史数据,根据订单类型,不同的人给了多少小费,根据订单类是取货还是送货给了多少不同的人。在监督学习中,模型从过去的事例中学习,以预测未来的值。因此这里的模型根据订单是取货还是送货,使用总账单金额来预测未来的消费金额。

这是无监督模型可能试图解决问题事例,在这里要查看任期和收入,然后将员工分组获集群,看看是否有人在快速通道上。无监督的问题都是关于查看原始数据,并查看他是否自然分组,让我们更深入一点以图形方式展示。

上面这些概念是理解生成式AI的基础。

在监督学习中,测试数据值被输入到模型中,该模型输出预测,并将该预测与用于训练模型的训练数据进行比较。

如果预测的测试数据值和实际训练数据值相距甚远,则称为错误,且该模型会尝试减少此错误,直到预测值和实际值更接近为止。

我们已经探讨了人工智能和机器学习、监督学习和无监督学习之间的区别。那么,让我们简要探讨一下深度学习的知识。

虽然机器学习是一个包含许多不同技术的广泛领域,但深度学习是一种使用人工神经网络的机器学习,允许他们处理比机器学习更复杂的模式。

人工神经网络的灵感来自于人脑,它们有许多相互连接的节点或神经元组成,这些节点或神经元可以通过处理数据和做出预测来学习执行任务。

深度学习模型通常具有多层神经元。这使他们能够学习比传统机器学习模型更复杂的模式。神经网络可以使用标记和未标记的数据,这称为半监督学习。在半监督学习中,神经网络在少量标记数据和大量未标记数据上进行训练。标记数据有助于神经网络学习任务的基本概念。而未标记的数据有助于神经网络泛化到新的例子。

在这个人工智能学科中的地位,这意味着使用人工神经网络,可以用监督、非监督和半监督方法处理标记和未标记数据。大型语言模型也是深度学习的一个子集,深度学习模型或者一般意义上的机器学习模型。

深度学习可以分为判别式和生成式两种。判别模型是一种用于分类或预测数据点标签的模型。判别模型通常在标记数据点的数据集上进行训练。他们学习数据点的特征和标签之间的关系,一旦训练了判别模型,它就可以用来预测新数据点的标签。而生成模型根据现有数据的学习概率分布生成新的数据实例,因此生成模型产出新的内容。

生成模型可以输出新的数据实例,而判别模型可以区分不同类型的数据实例。

该图显示了一个传统的机器学习模型,区别在于数据和标签之间的关系 ,或者你想要预测的内容。底部图片显示了一个生成式AI模型,尝试学习内容模式,以便生成输出新内容。

当输出外标签是数字或概率时为非生成式AI,例如垃圾邮件、非垃圾邮件。当输出是自然语言为生成式AI,例如语音、文本、图像视频。

模型输出是所有输入的函数,如果Y是数字,如预测的销售额,则它不是GenAI。如果Y是一个句子,就像定义销售一样。它是生成性的,因为问题会引发文本响应。他的反应将基于该模型已经训练过的所有海量大数据。

总而言之,传统的、经典的有监督和无监督学习过程,采用训练代码和标签数据来构建模型。根据用例或问题,模型可以为你提供预测,它可以对某些东西进行分类或聚集,使用此势力展示生成该过程的稳健程度。

GenAI过程可以获取所有数据类型的训练代码、标签数据和未标签数据,构建基础模型,然后基础模型可以生成新内容。例如文本、代码、图像、音频、视频等。

从传统编程到神经网络,再到生成模型, 我们已经走了很长一段路。在传统的编程中,我们过去不得不编码区分猫的规则。类型是动物,腿有4条,耳朵有2个,毛皮是有的等等。

在神经网络的浪潮中,我们可以给网络提供猫和狗的图片。并询问这是一只猫。他会预测出一只猫。在生成式AI浪潮中,我们作为用户,可以生成我们自己的内容。

无论是文本、图像、音频、视频等等,例如Python语言模型或对话应用程序语言模型等模型。从互联网上的多个来源获取非常大的数据。构建可以简单的通过提问来使用的基础语言模型。所以,当你问他什么是猫时,他可以告诉你他所了解的关于猫的一切。

GenAI生成式AI是一种人工智能技术,它根据从现有内容中学到的知识来创建新内容,从现有内容中学习的过程称为训练。并在给出提示时创建统计模型,使用该模型来预测预期的响应可能是什么,并生成新的内容。

从本质上讲,它学习数据的底层结构内容,然后可生成与训练数据相似的新样本。如之前所述,生成语言模型可以利用他从展示的事例中学到的知识,并根据该信息创建全新的东西。

大型语言模型是一种生成式人工智能,因为他们以自然发音的语言形式生成新颖的文本组合,生成图像模型,将图像作为输入,并可以输出文本、另一幅图像或视频。例如,在输出文本下,你可以获得视觉问答,而在输出图像下生成图像补全,并在输出视频下生成动画。

生成语言模型,以文本作为输入,可以输出更多的文本、图像、音频或决策。例如,在输出文本下生成问答,并在输出图像下生成视频。

我们已经说过,生成语言模型通过训练数据了解模式和语言,然后给定一些文本,他们会预测接下来会发生什么。

生成语言模型是模式匹配系统,他们根据您提供的数据了解模式。根据他从训练数据中学到的东西,他提供了如何完成这句话的预测。它接受了大量文本数据的训练,能够针对各种提示和问题进行交流,并生成像人类的文本。


在transformer中,Hallucin是由模型生成的单词或短语,通常是无意义的或语法错误的。幻觉可能由多种因素引起,包括模型没有在足够的数据上训练,或者模型是在嘈杂或肮脏的数据上训练的,又或者没有给模型足够的上下文,还存在,没有给模型足够的约束。

他们还可以使模型更有可能生成不正确或误导性的信息,例如杂TPT3.5有时可能生成的信息未必正确。提示词是作为输入提供给大型语言模型的一小段文本。并且它可以用于多种方式控制模型的输出。

提示设计是创建提示的过程,该提示将从大型语言模型生成所需的输出内容。如之前所述,LLM在很大程度上取决于你输入的训练数据。他分析输入数据的模式和结构,从而进行学习。但是通过访问基于浏览器的提示,用户可以生成自己的内容。

我们已经展示了基于数据的输入类型的路线图,以下是相关的模型类型。

文本到文本模型。采用自然语言输入并生成文本输出。这些模型被训练学习文本之间的映射。例如,从一种语言到另一种语言的翻译。

文本到图像模型。因为文本到图像模型是在大量图像上训练的。每个图像都带有简短的文本描述。扩散是用于实现此目的的一种方法。

文本到视频和文本到3D。文本到视频模型只在文本输入生成视频内容,输入文本可以是从单个句子到完整脚本的任何内容。输出是与输入文本相对应的视频类似的文本到3D模型生成对应于用户文本描述的三位对象。例如,这可以用于游戏或其他3D世界。

文本到任务模型。经过训练,可以根据文本输入执行定义的任务或操作。此任务可以是广泛的采取操作。例如回答问题、执行搜索、进行预测或采取某种操作,也可以训练文本到任务模型来指导外B问或通过可以更改文档。

基础模型是在大量数据上进行预训练的大型AI模型。目的在适应或微调各种下游任务,例如情感分析、图像、字幕和对象识别。

基础模型有可能彻底改变许多行业,包括医疗保健、金融和客户服务等,它们可用于检测预测,并提供个性化的客户支持。OpenAI提供了一个包含基础的模型源语言,基础模型包括用于聊天和文本的。

视觉基础模型包括稳定扩散,可以有效的从文本描述生成包质量图像。假设你有一个案例,需要收集有关客户对您的产品或服务的感受。

生成式AI Studio,在开发者来看,让您无需编写任何代码即能轻松设计和构建应用程序。它有一个可视化编辑器,可以轻松创建和编辑应用程序内容。还有一个内置的搜索引擎,允许用户在应用程序内搜索信息。

还有一个对话式人工智能引擎,可以帮助用户使用自然语言与应用程序进行交互。您可以创建自己的数字助理、自定义搜索引擎、知识库、培训应用程序等等。


模型部署工具可帮助开发人员使用多种不同的部署选项,将在模型部署到生产环境中。而模型监控工具帮助开发人员使用仪表板和许多不同的度量来监控ML模型在生产中的性能。

如果把生成式AI应用开发看作一个复杂拼图的组装,其需要的数据科学、机器学习、编程等每一项技术能力就相当于拼图的每一块。

没有技术积累的企业理解这些拼图块本身就已经是很困难的事,将它们组合在一起就变成了一项更为艰巨的任务。但如果有服务方能给这些技术能力薄弱的传统企业提供一些预拼好的拼图部分,这些传统企业就能够更容易、更快速地完成整幅拼图。

从国内市场真实的情况来看,生成式AI的发展既不像当初追风口的从业者预估的那样乐观,也没有唱衰者形容的那么悲观。

企业用户追求应用的稳健性、经济性、安全性和可用性,这和大语言模型等生成式AI在训练过程中不惜花费高昂算力成本达成更高的能力是完全不同的路径。

这背后一个核心的问题是,在想象空间更大的企业级生成式AI领域,最重要的不是大模型能力有多强,而是如何能够从基础模型演变成各个领域中的具体应用,从而赋能整个经济社会的发展。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1584973.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

漫途水产养殖水质智能监测方案,科技助力养殖业高效生产!

随着水产养殖业的蓬勃发展,水质和饲料等多重因素逐渐成为影响其持续健康发展的关键因素。由于传统养殖模式因监控和调节手段不足,往往造成养殖环境的恶化。需要通过智能化养殖,调控养殖环境,实现养殖的精细化管理模式,…

Python爬虫网络实践:去哪儿旅游数据爬取指南

Python爬虫网络实践:去哪儿旅游数据爬取指南 在这个博客中,我们将探索如何使用 Python 来进行网络数据抓取,并以抓取旅游数据为例进行演示。我们将通过一个简单的示例来说明如何利用 Python 中的常用库进行网页抓取,从而获取旅游…

Go语言开发工具Vscode配置

Go语言开发工具Vscode配置方法分享: 1.下载安装vscode https://code.visualstudio.com/ 2.汉化vscode 3.vscode中安装Go语言插件 源自:大地老师Golang语言beego入门实战视频教程下载地址

rsync 远程同步----------安全高效的异地备份方案

目录 一、rsync介绍 rsync和cp的区别 rsync和scp的区别 二、rsync同步方式 rsync备份的方式 三、配置rsync源服务器 ①本地复制 ②下行同步 ③上行同步 四、常用Rsync命令 五、配置源的两种表达方法 六、部署rsync下行同步 ①环境准备 ②配置rsync源服务器------…

[大模型]Qwen1.5-7B-Chat 接入 LangChain 搭建知识库助手

Qwen1.5-7B-Chat 接入 LangChain 搭建知识库助手 环境准备 在 autodl 平台中租赁一个 3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch–>2.0.0–>3.8(ubuntu20.04)–>11.8 接下来打开刚刚租用服务器的 JupyterLab,并且打开其中的终端…

String类(1)

❤️❤️前言~🥳🎉🎉🎉 hellohello~,大家好💕💕,这里是E绵绵呀✋✋ ,如果觉得这篇文章还不错的话还请点赞❤️❤️收藏💞 💞 关注💥&a…

45-基于Kubernetes的云原生架构设计

云原生简介 云原生包含的概念很多,对于一个应用开发者来说,主要关注点是如何开发应用,以及如何部署应用。会主要介绍应用层的云原生架构设计和系统资源层的云原生架构设计。 CNCF(云原生计算基金会)简介 CNCF&#x…

竞品数据的监测范围

常规的数据监测一般指的是价格监测,品牌对线上产品链接中的页面价、到手价进行监测,同时也可监测标题变化、销量变化、库存变化、优惠信息变化等,对于对够执行数据监测的系统来说,不管哪个品牌的数据都可做到以上维度的监测&#…

SOCKS代理概述

在网络技术的广阔领域中🌐,SOCKS代理是一个核心组件,它在提升在线隐私保护🛡️、实现匿名通信🎭以及突破网络访问限制🚫方面发挥着至关重要的作用。本文旨在深入探讨SOCKS代理的基础,包括其定义…

阿里云云效CI/CD配置

1.NODEJS项目流水线配置(vue举例) nodejs构建配置 官方教程 注意:下图的dist是vue项目打包目录名称,根据实际名称配置 # input your command here cnpm cache clean --force cnpm install cnpm run build 主机部署配置 rm -rf /home/vipcardmall/frontend/ mkdir -p /home/…

SV-7042V 40W网络有源音柱 智慧灯杆广播音柱

SV-7042V 40W网络有源音柱 一、描述 SV-7042V是深圳锐科达电子有限公司的一款壁挂式网络有源音柱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,其采用防水设计,功率40W。 SV-7042V作为网络广播播放系统的终…

Go——网络编程

一. 互联网协议介绍 网络基础——网络传输基本流程_网络传输过程-CSDN博客 应用层HTTP协议-CSDN博客 传输层UDP/TCP协议_udp报文提供的确认号用于接收方跟发送方确认-CSDN博客 网络层IP协议-CSDN博客 链路层以太网详解_以太网数据链路层-CSDN博客 二. Socket编程 Socket是…

智能运维场景 | 科技风险预警,能实现到什么程度?

[ 原作者:擎创夏洛克,本文略做了节选和改编 ] 每次一说到“风险预警”,就会有客户问我们能做怎样的风险预警。实际上在智能运维厂商来说,此风险非彼风险,不是能做银行的业务上的风险预警(比如贷款风险等&a…

Day 22 235. 二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点

二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大&#…

2024年CISP认证详细报考流程和条件,建议收藏!

CISP(Certified Information Security Professional,注册信息安全专业人员)证书是由中国信息安全测评中心(CNITSEC)颁发的专业资质证书,旨在为信息安全领域培养和认证具备一定专业水平的安全人才。CISP证书…

IDEA 导出jar无法执行 错误: 找不到或无法加载主类

1、首先配置正确Project Struct 保证需要引用的jar包库添加到Libraries里,尽管添加到Modules里依然可以测试运行或调试,但导出的jar包会遇到问题。 2、导出jar,方式选择如下 选择”From modules with dependencies" 然后去掉以上“Extr…

【C语言基础】:编译和链接(计算机中的翻译官)

文章目录 一、翻译环境和运行环境1. 翻译环境1.1 编译1.1.1 预处理1.1.2 编译1.1.3 汇编 1.2 链接 2. 运行环境 一、翻译环境和运行环境 我们在Visual Studio上写的C语言代码其实都是一些文本信息,计算机是不能够直接执行他们的,计算机只能够执行二进制…

机器人方向控制中应用的磁阻角度传感芯片

磁阻传感器提供的输出信号几乎不受磁场变动、磁温度系数、磁传感器距离与位置变动影响,可以达到高准确度与高效能,因此相当适合各种要求严格的车用电子与工业控制的应用。所以它远比采用其它传感方法的器件更具有优势。 机器人的应用日渐广泛&#xff0…

linux-docker删除redis容器

1、查看已经安装的redis镜像 docker ps2、通过别名或者通过容器ID:docker stop name/id docker stop 019814493c7a # id停止3、删除容器:可以通过name或id docker rm 019814493c7a # 通过id删除容器4、删除镜像: docker images # …

缓存策略以及如何选择正确的策略

正确地使用缓存可以减少系统响应的时间,降低数据库负载,反之可能带来相反的效果。因此,就必须了解有哪些缓存策略,以及如何根据实际使用场景选择合适的缓存策略。 缓存策略取决于数据和数据访问模式,即,数…