【深度学习】环境搭建ubuntu22.04

news2025/1/9 22:11:17

清华官网的conda源
https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
安装torch
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
2.2.2
在这里插入图片描述
conda install 指引看这里:
ref:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
invidia toolkit的指引在这里,看起来,driver和toolkit合二为一了,一步到位。
https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
cudann安装:https://docs.nvidia.com/deeplearning/cudnn/installation/linux.html

报错:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220
(base) justin@justin-System-Product-Name:/usr/src/cudnn_samples_v9/mnistCUDNN$ sudo make
CUDA_VERSION is 12040
Linking agains cublasLt = true
CUDA VERSION: 12040
TARGET ARCH: x86_64
HOST_ARCH: x86_64
TARGET OS: linux
SMS: 50 53 60 61 62 70 72 75 80 86 87 90
test.c:1:10: fatal error: FreeImage.h: No such file or directory
1 | #include “FreeImage.h”

解决方案:https://forums.developer.nvidia.com/t/verify-cudnn-install-failed/167220/4

cudnn测试通过,它被安装在了src下。cp一份sample到home下:


(base) justin@justin-System-Product-Name:~/cudnn_samples_v9/mnistCUDNN$ ./mnistCUDNN
Executing: mnistCUDNN
cudnnGetVersion() : 90000 , CUDNN_VERSION from cudnn.h : 90000 (9.0.0)
Host compiler version : GCC 11.4.0

There are 1 CUDA capable devices on your machine :
device 0 : sms 128  Capabilities 8.9, SmClock 2520.0 Mhz, MemSize (Mb) 24188, MemClock 10501.0 Mhz, Ecc=0, boardGroupID=0
Using device 0

Testing single precision
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.015360 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.017408 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.037728 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.106496 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.242464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.287936 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.028672 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.045024 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.104768 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.116736 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.136192 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.209152 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.9999399 0.0000000 0.0000000 0.0000561 0.0000000 0.0000012 0.0000017 0.0000010 0.0000000
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.011488 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.013312 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.024576 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.024576 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.028512 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 128848 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.023552 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.026624 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.029600 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.037536 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.044032 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.049152 time requiring 128848 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 0.9999288 0.0000000 0.0000711 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 0.9999820 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

Testing half precision (math in single precision)
Loading binary file data/conv1.bin
Loading binary file data/conv1.bias.bin
Loading binary file data/conv2.bin
Loading binary file data/conv2.bias.bin
Loading binary file data/ip1.bin
Loading binary file data/ip1.bias.bin
Loading binary file data/ip2.bin
Loading binary file data/ip2.bias.bin
Loading image data/one_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.008096 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.011104 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.011264 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.030464 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.030720 time requiring 2057744 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.031488 time requiring 178432 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.037696 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.041056 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.048128 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.053248 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.055296 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.057344 time requiring 4656640 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000001 1.0000000 0.0000001 0.0000000 0.0000563 0.0000001 0.0000012 0.0000017 0.0000010 0.0000001
Loading image data/three_28x28.pgm
Performing forward propagation ...
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.010240 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.012544 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.014336 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.025600 time requiring 178432 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.026656 time requiring 184784 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.032448 time requiring 2057744 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnGetConvolutionForwardAlgorithm_v7 ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: -1.000000 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: -1.000000 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: -1.000000 time requiring 2450080 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Testing cudnnFindConvolutionForwardAlgorithm ...
^^^^ CUDNN_STATUS_SUCCESS for Algo 4: 0.022368 time requiring 2450080 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 5: 0.027648 time requiring 4656640 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 0: 0.030720 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 7: 0.034816 time requiring 1433120 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 1: 0.037984 time requiring 0 memory
^^^^ CUDNN_STATUS_SUCCESS for Algo 2: 0.041984 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 6: -1.000000 time requiring 0 memory
^^^^ CUDNN_STATUS_NOT_SUPPORTED for Algo 3: -1.000000 time requiring 0 memory
Resulting weights from Softmax:
0.0000000 0.0000000 0.0000000 1.0000000 0.0000000 0.0000714 0.0000000 0.0000000 0.0000000 0.0000000
Loading image data/five_28x28.pgm
Performing forward propagation ...
Resulting weights from Softmax:
0.0000000 0.0000008 0.0000000 0.0000002 0.0000000 1.0000000 0.0000154 0.0000000 0.0000012 0.0000006

Result of classification: 1 3 5

Test passed!

(base) justin@justin-System-Product-Name:/usr/src$ locate cudnn_version.h
/usr/include/cudnn_version.h
(base) justin@justin-System-Product-Name:/usr/src$

ref:https://blog.csdn.net/qq_42406643/article/details/109545766

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1578970.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于RKNN的YOLOv5安卓Demo

1.简介 基于RKNPU2 SDK 1.6.0版的安卓YOLOv5演示应用程序,选择图片进行对象检测并显示识别结果。 GitHub源码地址:https://github.com/shiyinghan/rknn-android-yolov5 2.实现过程 参考RKNN官方库RKNN Model Zoo提供的YOLOv5对象检测demo&#xff0c…

政安晨:【Keras机器学习实践要点】(二十二)—— 基于 TPU 的肺炎分类

目录 简述 介绍 / 布置 加载数据 可视化数据集 建立 CNN 纠正数据失衡 训练模型 拟合模型 可视化模型性能 ​编辑预测和评估结果 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras机器学习实战 希望政安晨的博客…

使用aspose相关包将excel转成pdf 并导出

SpringBoot 项目 基于aspose相关jar包 将excel 转换成pdf 导出 1、依赖的jar包 &#xff0c; jar获取链接 aspose相关三方jar &#xff0c;下载解压后,在项目路径下建一个libs包&#xff0c;然后将下图两个jar 拷贝至刚新建的libs目录中 2、pom.xml中加入maven引入 <depend…

MySQL——查询命令

Linux里开启MySQL服务 设置启动和开机启动 systemctl start mysqld systemctl enable mysqld 登录数据库 mysql -uroot -p 查看数据库 SHOW DATABASES; 切换数据库 use 数据库名&#xff1b; 查看数据表的详细结构 mysql> desc funtb; 查看数据表 show table…

使用 proxySQL 来代理 Mysql

我有若干台云主机&#xff0c; 但是只有1个台vm 具有外部ip 而在另1台vm上我安装了1个mysql instance, 正常来讲&#xff0c; 我在家里的电脑是无法连接上这个mysql 尝试过用nginx 代理&#xff0c; 但是nginx只能代理http协议的&#xff0c; mysql 3306 并不是http协议 解决…

uni-app(H5)论坛 | 社区 表情选择 UI组件

项目源码请移步&#xff1a;bbs 效果 实现思路 表情切换 人物、动物、小黄人不同表情之间的切换实际就是组件的切换 emoji表情 emoji表情本身就是一种字符 如需其他emoji表情可参考 EmojiAll中文官方网站 需要注意的就是数据库的存储格式需要支持emoji表情&#xff0c;我项…

Paper Digest | GPT-RE:基于大语言模型针对关系抽取的上下文学习

持续分享 SPG 及 SPG LLM 双驱架构应用相关进展 1、动机 在很多自然语言处理任务中&#xff0c;上下文学习的性能已经媲美甚至超过了全资源微调的方法。但是&#xff0c;其在关系抽取任务上的性能却不尽如人意。以 GPT-3 为例&#xff0c;一些基于 GPT-3 的上下文学习抽取方…

RuleEngine规则引擎底层改造AviatorScript 之函数执行

https://gitee.com/aizuda/rule-engine-open 需求&#xff1a;使用上述开源框架进行改造&#xff0c;底层更换成AviatorScript &#xff0c;函数实现改造。 原本实现方式 Overridepublic Object run(ExecuteFunctionRequest executeTestRequest) {Integer functionId executeT…

计算机是如何工作的6

因此&#xff0c;往往就把“并行”和“并发”统称为“并发” 对应的编程方式&#xff08;解决一个问题&#xff0c;同时搞多个任务来执行&#xff0c;共同协作解决&#xff09;就称为“并发” 此处cpu的百分数&#xff0c;就是你的进程在cpu舞台上消耗时间的百分比 如果有一…

java实现UDP数据交互

1、回显服务器 服务器端 import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketException;public class UDP_Server {private DatagramSocket socketnull;public UDP_Server(int port) throws SocketExcepti…

Android图形显示架构概览

图形显示系统作为Android系统核心的子系统&#xff0c;掌握它对于理解Android系统很有帮助&#xff0c;下面从整体上简单介绍图形显示系统的架构&#xff0c;如下图所示。 这个框架只包含了用户空间的图形组件&#xff0c;不涉及底层的显示驱动。框架主要包括以下4个图形组件。…

【JavaWeb】Day37.MySQL概述——数据库设计-DML

数据库操作-DML DML英文全称是Data Manipulation Language(数据操作语言)&#xff0c;用来对数据库中表的数据记录进行增、删、改操作。 1.增加(insert) insert语法&#xff1a; 向指定字段添加数据 insert into 表名 (字段名1, 字段名2) values (值1, 值2); 全部字段添加数据…

CGAL的交叉编译-androidlinux-arm64

由于项目算法需要从Linux移植到android&#xff0c;原先的CGAL库也需要进行移植&#xff0c;先现对CGAL的移植过程做下记录&#xff0c;主要是其交叉编译的过程.。 前提条件&#xff1a; 1、主机已安装NDK编译器&#xff0c;版本大于19 2、主机已安装cmake 和 make 3、主机…

从零自制docker-8-【构建实现run命令的容器】

文章目录 log "github.com/sirupsen/logrus"args...go moduleimport第三方包失败package和 go import的导入go build . 和go runcli库log.SetFormatter(&log.JSONFormatter{})error和nil的关系cmd.Wait()和cmd.Start()arg……context.Args().Get(0)syscall.Exec和…

XC7A35T-2FGG484 嵌入式FPGA现场可编程门阵列 Xilinx

XC7A35T-2FGG484 是一款由Xilinx&#xff08;赛灵思&#xff09;制造的FPGA&#xff08;现场可编程门阵列&#xff09;芯片 以下是XC7A35T-2FGG484 的主要参数&#xff1a; 1. 系列&#xff1a;Artix-7 2. 逻辑单元数量&#xff1a;33280个 3. 工艺技术&#xff1a;28nm 4. …

element问题总结之el-table使用fixed中 header换行后固定行错位问题/固定列下陷问题

固定列下陷问题 效果图问题描述解决方案1、为table添加ref2、调用节点重新自适应方法doLayout3、在操作表头的时候触发的函数header-dragend绑定doLayout方法4、成功解决 效果图 问题描述 在使用el-table的fixed中&#xff0c;发现如果header拖拽文本折行的时候会出现下陷 解…

Go操作Kafka之kafka-go

Kafka是一种高吞吐量的分布式发布订阅消息系统&#xff0c;本文介绍了如何使用kafka-go这个库实现Go语言与kafka的交互。 Go社区中目前有三个比较常用的kafka客户端库 , 它们各有特点。 首先是IBM/sarama&#xff08;这个库已经由Shopify转给了IBM&#xff09;&#xff0c;之…

TCP/IP协议、HTTP协议和FTP协议等网络协议简介

文章目录 一、常见的网络协议二、TCP/IP协议1、TCP/IP协议模型被划分为四个层次2、TCP/IP五层模型3、TCP/IP七层模型 三、FTP网络协议四、Http网络协议1、Http网络协议简介2、Http网络协议的内容3、HTTP请求协议包组成4、HTTP响应协议包组成 一、常见的网络协议 常见的网络协议…

uniapp如何配置后使用uni.chooseLocation等地图位置api

在uniapp中想要使用uni.getLocation、uni.chooseLocation ……api的时候我们需要在小程序就开启配置&#xff0c;不然无法使用。 第一步&#xff1a;首先找到manifest.json 第二步&#xff1a;点击源码视图 第三步&#xff1a;在 mp-weixin 加入下面代码 "permission&…

DC-2靶机知识点

知识点总结 1.IP访问与域名访问 2.端口扫描 3.目录扫描 4.cewl密码生成器 5.指纹探测 6.爆破ssh 7.msf的使用 8.rbash逃逸 9.git提权 靶机&#xff0c;攻击机就不多说了&#xff0c;给个靶机地址 https://download.vulnhub.com/dc/DC-2.zip 环境配置 因为访问该靶机…