基于蚁群算法的三维路径规划(matlab实现)

news2025/1/12 2:47:06

作品简介

1 理论基础

1.1 三维路径规划问题概述

    三维路径规划指在已知三维地图中,规划出一条从出发点到目标点满足某项指标最优,并且避开了所有三维障碍物的三维最优路径。现有的路径规划算法中,大部分算法是在二维规划平面或准二维规划平面中进行路径规划。一般的三维路径规划算法具有计算过程复杂、信息存储量大、难以直接进行全局规划等问题。已有的三维路径规划算法主要包括A*算法、遗传算法、粒子群算法等,但是A*算法的计算量会随着维数的增加而急剧增加,遗传算法和粒子群算法只是准三维规划算法。

    ​ 蚁群算法具有分布计算、群体智能等优势,在路径规划上具有很大潜力,在成功用于二维路径规划的同时也可用于三维路径规划,本章采用蚁群算法进行水下机器人三维路径规划。

1.2 三维空间抽象建模

    三维路径规划算法首先需要从三维地图中抽象出三维空间模型,模型抽象方法如下:首先把三维地图左下角的顶点作为三维空间的坐标原点A,在点A中建立三维坐标系,其中,x轴为沿经度增加的方向,y轴为沿纬度增加的方向,z轴为垂直于海平面方向。在该坐标系中以点A为顶点,沿x轴方向取三维地图的最大长度AB,沿y轴方向取三维地图的最大长度AA',沿z轴方向取三维地图的最大长度AB,这样就构造了包含三维地图的立方体区域ABCD-A'B'C'D',该区域即为三维路径的规划空间。三维路径规划空间如图1所示。三维路径空间建立起来之后,采用等分空间的方法从三维空间中抽取出三维路径规划所需的网格点。首先沿边AB把规划空间ABCD-A'B'C'D'进行等分,得到n+1个平面Ⅱi(i=1,2,…,n),然后对这n+1个平面沿边AD进行m等分,沿边AA'进行l等分,并且求解出里面的交点。平面划分如图2所示。

    

    ​    ​通过以上步骤,整个规划空间ABCD-A'B'’C'D'就离散化为一个三维点集合,集合中的任意一点对应着两个坐标,即序号坐标a1(i,j,k)(i=0,1,2,…,n,j=0,1,2,…,m,k=0,1,2, …,l)和位置坐标a2 (xi ,yi, zi), 其中,i,j,k分别为当前点a沿边AA,边AD,边AA'的划分序号。蚁群算法即在这些三维路径点上进行规划,最终得到连接出发点和目标点满足某项指标最优的三维路径。

2案例背景

2.1问题描述

    采用蚁群算法在跨度为21 km×21 km的一片海域中搜索从起点到终点,并且避开所有障碍物的路径,为了方便问题的求解,取该区域内最深点的高度为0,其他点高度根据和最深点高度差依次取得。路径规划起点坐标为(1,10,800),终点坐标为(21,4,1 000),规划环境和起点、终点如图3所示。整个搜索空间为21 km×21 km的海域,其中,起点坐标为(1,10,800),终点坐标为(21,4,1 000)。

    基于蚁群算法的三维路径搜索算法的算法流程如图4所示。

     

    ​   其中,三维环境建模模块根据1.2节抽取出三维环境数学模型;搜索节点模块根据启发函数搜索下个节点;信息素更新模块更新环境中节点的信息素值。

2.3 信息素更新

    蚁群算法使用信息素吸引蚂蚁搜索,信息素位置设定及更新方法对于蚁群算法的成功搜索具有非常重要的意义。在1.2节中已经把整个搜索空间离散为一系列的三维离散点,这些离散点为蚁群算法需要搜索的节点。因此,把信息素存储在模型的离散点中,每个离散点都有一个信息素的值,该点信息素的大小代表对蚂蚁的吸引程度,各点信息素在每只蚂蚁经过后进行更新。信息素的更新包括局部更新和全局更新两部分,局部更新是指当蚂蚁经过该点时,该点的信息素就减少,局部更新的目的是增加蚂蚁搜索未经过点的概率,达到全局搜索的目的。局部信息素更新随着蚂蚁的搜索进行,信息素更新公式为

2.4可视搜索空间

    取α轴方向作为三维路径规划的主方向,水下机器人沿工轴方向前进,为了降低规划复杂程度,将水下机器人的运动简化为前向运动、横向运动和纵向运动三种运动方式。在前向运动一定单位长度距离Lx,max情况下,设定机器人最大横向移动允许距离为Ly,max,最大纵向移动距离为Lz,max。这样,当蚂蚁沿着α轴方向前进时,当位于点H(i,j,k)时,对下一个点的搜索就存在一个可视区域,可视区域如图5所示。

    这样,当蚂蚁由当前点向下一个点移动时,可搜索的区域限制在蚂蚁搜索可视区域之内,简化了搜索空间,提高了蚁群算法的搜索效率。

2.5 蚁群搜索策略

    蚂蚁从当前点移动到下一个点时,根据启发函数来计算可视区域内各点的选择概率,启发函数为

3 仿真结果为:

    ​    ​采用蚁群算法进行三维路径规划,规划空间范围为20km×20 km的海域,根据1.2节的内容把规划空间抽象为21km×21km×21km的规划空间,其中,x轴,y轴方向每个节点的间距为1km,z轴方向每个节点间距为200m。路径起点在规划空间的序号为[1 10 4], 终点在规划空间的序号为[21 4 5]。算法的基本设置为种群规模为20,算法迭代为400次,路径规划结果和最优个体适应度变化如图6和图7所示。

4 总结

    以蚁群算法为代表的群智能已成为当今分布式人工智能研究的一个热点,许多源于蜂群和蚁群模型设计的算法已越来越多地被应用于企业的运转模式的研究。美国五角大楼正在资助关于群智能系统的研究工作——群体战略(swarm strategy),它的一个实战用途是通过运用成群的空中无人驾驶飞行器和地面车辆来转移敌人的注意力,让自己的军队在敌人后方不被察觉地安全活动。英国电信公司和美国世界通信公司以电子蚂蚁为基础,对新的电信网络管理方法进行了试验。群智能还被应用于工厂生产计划的制订和运输部门的后勤管理。美国太平洋西南航空公司采用了一种直接源于蚂蚁行为研究成果的运输管理软件,结果每年至少节约1000万美元的费用开支。英国联合利华公司率先利用群智能技术改善其一家牙膏厂的运转情况。美国通用汽车公司、法国液气公司、荷兰公路交通部和美国一些移民事务机构也都采用这种技术来改善其运转。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1565911.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一种新的瑞数系列通杀方案(以某监局瑞数6为例)

文章目录 声明案例地址参考代码声明 本文章中所有内容仅供学习交流,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关,若有侵权,请私信我立即删除! 案例地址 aHR0cHM6Ly93d3cubm1wYS5nb3YuY24vZGF0YXNlYXJjaC9ob21lLWluZGV4Lmh0bWw=然后搜索 关键词 可…

02-JDK新特性-函数式接口

函数式接口 什么是函数式接口 函数式接口(Functional Interface)就是有且仅有一个抽象方法,但是可以有多个非抽象方法的接口。 函数式接口可以被隐式转换为 Lambda 表达式。 我们可以在一个接口上使用 FunctionalInterface 注解,这样做可以检查它是否是…

文献速递:深度学习胰腺癌诊断--螺旋变换与模型驱动的多模态深度学习方案相结合,用于自动预测胰腺癌中TP53突变麦田医学

Title 题目 Combined Spiral Transformation and Model-Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of TP53 Mutation in Pancreatic Cancer 螺旋变换与模型驱动的多模态深度学习方案相结合,用于自动预测胰腺癌中TP53突变 01 文献速递介…

MapReduce [OSDI‘04] 论文阅读笔记

原论文:MapReduce: Simplified Data Processing on Large Clusters (OSDI’04) 1. Map and Reduce Map:处理键值对,生成一组中间键值对Reduce:合并与同一中间键相关的所有中间值process overview:分割输入数据&#x…

【Redis基础篇】详细讲解Redis

这篇文章让你详细了解Redis的相关知识,有代码讲解以及图片剖析,让你更轻松掌握 制作不易,感觉不错,请点赞收藏哟 !!! 目录 1 redis基础 1.1 定义 1.2 SQL和NOSQL不同点 1.3 特征 1.4 Redis…

docker版Elasticsearch安装,ik分词器安装,用户名密码配置,kibana安装

1、安装es和ik分词器 创建映射目录并赋予权限: mkdir -p /docker_data/elasticsearch/conf mkdir -p /docker_data/elasticsearch/data mkdir -p /docker_data/elasticsearch/plugins chmod -R 777 /docker_data/elasticsearch编写配置文件: vi /dock…

基于java+SpringBoot+Vue的校园交友网站设计与实现

基于javaSpringBootVue的校园交友网站设计与实现 开发语言: Java 数据库: MySQL技术: SpringBoot MyBatis工具: IDEA/Eclipse、Navicat、Maven 系统展示 前台展示 后台展示 系统简介 整体功能包含: 校园交友网站是一个为在校师生提供一个交流互动、寻找朋友的…

【数据库系统工程师】软考2024年5月报名流程及注意事项

2024年5月软考数据库系统工程师报名入口: 中国计算机技术职业资格网(http://www.ruankao.org.cn/) 2024年软考报名时间暂未公布,考试时间上半年为5月25日到28日,下半年考试时间为11月9日到12日。不想错过考试最新消息…

C++核心高级编程 --- 4.类和对象

文章目录 第四章:4.类和对象4.1 封装4.1.1 封装的意义4.1.2 struct与class的区别 4.2 对象的初始化和清理4.2.1 构造函数和析构函数4.2.2 构造函数的分类及调用4.2.3 拷贝构造函数调用时机4.2.4 构造函数调用规则4.2.5 深拷贝与浅拷贝4.2.6 初始化列表4.2.7 类对象作…

Python实现BOA蝴蝶优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算…

使用kubeadm工具搭建Kubernetes集群

本文目录 一、CentOS7最小化安装(master)1、下载ISO镜像2、安装3、进入centos安装界面4、安装最小化安装必要的一些工具 二、克隆虚拟机(node1、node2)三、基础配置1、节点规划——部署架构图2、防火墙和SElinux配置2、主机名和ho…

nginx与tomcat的区别?

关于nginx和tomcat的概念 网上有很多关于nginx和tomcat是什么东西的定义,我总结了一下: tomcat是Web服务器、HTTP服务器、应用服务器、Servlet容器、web容器。 Nginx是Web服务器、HTTP服务器、正向/反向代理服务器,。 这里有两个概念是交叉的&#xff…

科技团队治理能力成长路线图

点击👆蓝字 关注我们 本文观点|吴穹 主笔|AI小助手 温馨提示:干货长文,建议收藏阅读喔~ 引言 2024年3月20日,吴穹博士于上海交通大学上海高级金融学院同一众信托行业金融科技管理者进行了《金融…

软件架构风格_2.调用/返回体系结构风格

调用/返回风格是指在系统中采用了调用与返回机制。利用调用-返回实际上是一种分而治之的策略,其主要思想是将一个复杂的大系统分解为若干子系统,以便降低复杂度,并且增加可修改性。程序从其执行起点开始执行该构件的代码,程序执行…

海外媒体软文发稿:带动海外宣发新潮流,迈向国际舞台

引言 随着全球化的发展,越来越多的中国企业希望在国际舞台上展示自己的实力。而海外媒体软文发稿作为一种全新的海外宣传方式,正逐渐成为带动海外宣发新潮流的有力工具。本文将探讨海外媒体软文发稿的优势和如何迈向国际舞台。 海外媒体软文发稿的优势…

tcpdump + wireshark 服务器抓包分析

tcpdump wireshark 服务器抓包分析 1.tcpdump安装2.tcpdump使用3.安装wireshark4.使用wireshark 本文用以总结使用tcpdump进行抓包,然后使用wireshark工具打开抓包出来的pacp文件进行分析。通过tcpdump可以实时监控到linux服务器中tcp和http、https等通讯的内容和信…

LVGL:拓展部件——日历 lv_calendar

一、概述 此控件特点: 以7x7矩阵的形式展示任何一个月的日期,即在一个7行7列的网格中呈现。显示星期的名称,即每一列对应一个特定的星期几(如周一、周二等)。高亮显示当前日期(即今天)。支持高…

强大缓存清理工具 NetShred X for Mac激活版

NetShred X for Mac是一款专为Mac用户设计的强大缓存清理工具,旨在帮助用户轻松管理和优化系统性能。这款软件拥有直观易用的界面,即使是初次使用的用户也能快速上手。 软件下载:NetShred X for Mac激活版下载 NetShred X能够深入扫描Mac系统…

深入理解MySQL:拼接字符串、查询、删除表和创建索引的关键命令

MySQL是一种功能强大的关系型数据库管理系统,广泛应用于各种类型的应用程序中。本文将介绍MySQL中一些常用的关键命令,包括拼接字符串、查询、删除表和创建索引,帮助读者更好地理解和利用MySQL数据库。 mysql拼接字符串 在MySQL中&#xf…

[RK3588-Android12] 调试MIPI-双通道-压缩屏(Video Mode/MIPI Dphy 8Lane/DSC 144HZ)

问题描述 被测屏幕:小米Pad6 分辨率:1800X2880 模式:Video Mode/MIPI Dphy 8Lane/DSC 144HZ PPS: 11 00 00 89 30 80 0B 40 03 84 00 14 01 C2 01 C2 02 00 01 F4 00 20 01 AB 00 06 00 0D 05 7A 06 1A 18 00 10 F0 03 0C 20 00 06 0B 0B 33…