StreamingT2V文本生成视频多模态大模型,即将开源!

news2024/11/23 11:42:28

1、前言

        Picsart人工智能研究所、德克萨斯大学和SHI实验室的研究人员联合推出了StreamingT2V视频模型。通过文本就能直接生成2分钟、1分钟等不同时间,动作一致、连贯、没有卡顿的高质量视频。

虽然StreamingT2V在视频质量、多元化等还无法与Sora媲美,但在高速运动方面非常优秀,这为开发长视频模型提供了技术思路。

研究人员表示,理论上,StreamingT2V可以无限扩展视频的长度,并正在准备开源该视频模型。

论文地址:https://arxiv.org/abs/2403.14773

github地址:https://github.com/Picsart-AI-Research/StreamingT2V(即将开源)

2、介绍

        传统视频模型一直受训练数据、算法等困扰,最多只能生成10秒视频。Sora的出现将文生视频领域带向了一个全新的高度,突破了诸多技术瓶颈,仅通过文本就能生成最多1分钟的视频。

而StreamingT2V采用了创新的自回归技术框架,通过条件注意力、外观保持和随机混合三大模块,极大的延长了视频的时间,同时保证动作的连贯性。

        简单来说,StreamingT2V使用了一种“击鼓传花”的方法,每一个模块通过提取前一个视频块中的表示特征,来保证动作一致性、文本语义还原、视频完整性等。

2.1、条件注意力模块

        条件注意力模块是一种“短期记忆”,通过注意力机制从前一个视频块中提取特征,并将其注入到当前视频块的生成中,实现了流畅自然的块间过渡,同时保留了高速运动特征。

先使用图像编码器对前一个视频块的最后几帧(例如20帧)进行逐帧编码,得到相应的特征表示,并将这些特征送入一个浅层编码器网络(初始化自主模型的编码器权重)进行进一步编码。

图片

然后将提取到的特征表示注入到StreamingT2V的UNet的每个长程跳跃连接处,从而借助前一视频块的内容信息来生成新的视频帧,但不会受到先前结构、形状的影响。

2.2、外观保持模块

        为了保证生成视频全局场景、外观的一致性,StreamingT2V使用了外观保持这种“长期记忆”方法。

外观保持从初始图像(锚定帧)中提取高级场景和对象特征,并将这些特征用于所有视频块的生成流程。这样做可以帮助在自回归过程中,保持对象和场景特征的连续性。

图片

此外,现有方法通常只针对前一个视频块的最后一帧进行条件生成,忽视了自回归过程中的长期依赖性。通过使用外观保持,可以使用初始图像中的全局信息,从而更好地捕捉到自回归过程中的长期依赖性。

2.3、随机混合模块

        前两个模块保证了StreamingT2V生成的视频大框架,但是在分辨率、质量方面还有欠缺,而随机混合模块主要用来增强视频的分辨率。

        如果直接增强质量会耗费大量AI算力、时间,所以,随机混合采用了自回归增强的方法。

首先,研究人员将低分辨率视频划分为多个长度为24帧的视频块,这些块之间是有重叠的。然后,利用一个高分辨率的视频模型,对每一个视频块进行增强,得到对应的高分辨率视频块。

图片

        例如,有两个重叠的视频块A和B,重叠部分包含20帧。对于重叠部分的每一帧,随机混合模块会从A块和B块中各取出一帧,然后对这两帧进行加权平均,生成一个新的混合帧。通过这种方式,重叠部分的每一帧都是A块和B块对应帧的随机混合。

而对于不重叠的部分,随机混合模块则直接保留原始视频块中的帧。经过随机混合后的视频块就可以输入到高分辨率模型中进行增强。

研究人员指出,如果让相邻的两个视频块直接共享完全相同的重叠帧,会导致视频在过渡处出现不自然的冻结和重复效果。而随机混合模块通过生成新的混合帧,很好地规避了这个难题,使得块与块之间的过渡更加平滑自然。

图片

实验数据显示, StreamingT2V生成的1分钟、2分钟长视频,不仅保持了高分辨率和清晰画质,整体的时间连贯性也得到了很大提升。视频中的物体运动姿态丰富,场景和物体随时间的演变更加自然流畅,没有突兀的断层或冻结情况出现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1564301.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【zlm】音视频流与音频流合并的设计

目录 设想一 设想二 方案三 关键技术 测试语句 测试脚本 参考文档 设想一 //开始录制_option.mp4_save_path custom_path;_option.mp4_max_second max_second;vector<Track::Ptr> mytracks getTracks();auto src MediaSource::find( DEFAULT_VHOST, "1&quo…

基于单片机32X32LED汉字滚动点阵屏显示设计

**单片机设计介绍&#xff0c;基于单片机32X32LED汉字滚动点阵屏显示设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机32X32LED汉字滚动点阵屏显示设计是一个融合了硬件、软件以及电子显示技术的综合性项目。以下是对该设计的…

ES8 学习 -- async 和 await / 对象方法扩展 / 字符串填充

文章目录 1. async 和 await1.1 基本语法1.2 使用示例1.3 案例练习 2. 对象方法扩展2.1 Object.values(obj)2.2 Object.entries(obj)2.3 Object.getOwnPropertyDescriptors(obj)使用示例 3. 字符串填充4. 函数参数的末尾加逗号 1. async 和 await async 函数&#xff0c;使得异…

【嵌入式硬件】光耦

1.光耦作用 光耦一般用于信号的隔离。当两个电路的电源参考点不相关时,使用光耦可以保证在两边不共地的情况下,完成信号的传输。 2.光耦原理 光耦的原理图如下所示,其内部可以看做一个特殊的“三极管”; 一般的三极管是通过基极B和发射极E间的电流,去控制集电极C和发射极…

图像处理与视觉感知---期末复习重点(6)

文章目录 一、图像分割二、间断检测2.1 概述2.2 点检测2.3 线检测2.4 边缘检测 三、边缘连接3.1 概述3.2 Hough变换3.3 例子3.4 Hough变换的具体步骤3.5 Hough变换的法线表示形式3.6 Hough变换的扩展 四、阈值处理4.1 概述4.2 计算基本全局阈值算法4.3 自适应阈值 五、基于区域…

视频汇聚/安防监控/EasyCVR平台播放器EasyPlayer更新:新增【性能面板】

视频汇聚/安防监控/视频存储平台EasyCVR基于云边端架构&#xff0c;可以在复杂的网络环境中快速、灵活部署&#xff0c;平台视频能力丰富&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云…

128Days

今天是我踏上创作之路的第128天&#xff0c;回首过去的这些日子&#xff0c;心中充满了感慨和喜悦。我想&#xff0c;每一个热爱创作的人&#xff0c;都会珍惜自己走过的每一天&#xff0c;因为每一天都充满了新的灵感和挑战。 从最初的懵懂无知&#xff0c;到现在对创作的热情…

CTF wed安全 (攻防世界)练习题

一、disabled_button 步骤一&#xff1a;进入网站发现按钮按不了 步骤二&#xff1a;按F12会查看源代码&#xff0c;会发现disabled disable属性 在HTML中&#xff0c; disabled 属性只有两个值&#xff1a;一个是不带值&#xff08;例如&#xff1a;disabled&#xff09;&…

基于单片机和PCF8591波形发生器可调系统设计

**单片机设计介绍&#xff0c;基于单片机和PCF8591波形发生器可调系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机和PCF8591的波形发生器可调系统设计是一个结合了硬件与软件技术的综合性项目。这种设计旨在通…

【机器学习300问】61、逻辑回归与线性回归的异同?

本文讲述两个经典机器学习逻辑回归&#xff08;Logistic Regression&#xff09;和线性回归&#xff08;Linear Regression&#xff09;算法的异同&#xff0c;有助于我们在面对实际问题时更好的进行模型选择。也能帮助我们加深对两者的理解&#xff0c;掌握这两类基础模型有助…

uniapp:小程序腾讯地图程序文件qqmap-wx-jssdk.js 文件一直找不到无法导入

先看问题&#xff1a; 在使用腾讯地图api时无法导入到qqmap-wx-jssdk.js文件 解决方法&#xff1a;1、打开qqmap-wx-jssdk.js最后一行 然后导入&#xff1a;这里是我的路径位置&#xff0c;可以根据自己的路径位置进行更改导入 最后在生命周期函数中输出&#xff1a; 运行效果…

2024年网络安全趋势前瞻:从AI攻击到云安全新挑战

随着2024年开展新的序幕&#xff0c;网络安全领域正面临着前所未有的挑战与机遇&#xff0c;一系列引人注目的趋势和预测逐渐浮出水面。 一、AI技术发展引发的安全问题 近年来&#xff0c;我们见证了AI技术的飞速进步&#xff0c;其中ChatGPT等引领潮流的AI服务成为公众瞩目的…

C++语言学习(二)——⭐缺省参数、函数重载、引用

1.⭐缺省参数 &#xff08;1&#xff09;缺省参数概念 缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时&#xff0c;如果没有指定实参则采用该形参的缺省值&#xff0c;否则使用指定的实参。 void Func(int a 0) {cout<<a<<endl; } int…

Transformer - model architecture

Transformer - model architecture flyfish Transformer总体架构可分为四个部分: 输⼊部分 输出部分 编码器部分 解码器部分 输入部分 输出部分 输⼊部分包含: 源嵌⼊层和位置编码 ⽬标嵌⼊层和位置编码 输出部分包含: 线性层 softmax处理器 左侧编码器部分和右侧解码器部…

勒索病毒最新变种.rmallox勒索病毒来袭,如何恢复受感染的数据?

导言&#xff1a; 随着信息技术的飞速发展&#xff0c;网络安全问题日益突出&#xff0c;其中勒索病毒便是近年来备受关注的网络安全威胁之一。在众多勒索病毒中&#xff0c;.rmallox勒索病毒以其独特的传播方式和强大的加密能力&#xff0c;给广大用户带来了极大的困扰。本文…

图论模板详解

目录 Floyd算法 例题&#xff1a;蓝桥公园 Dijkstra算法 例题&#xff1a;蓝桥王国 SPFA算法 例题&#xff1a;随机数据下的最短路问题 总结 最小生成树MST Prim算法 Kruskal算法 例题&#xff1a;聪明的猴子 Floyd算法 最简单的最短路径算法&#xff0c;使用邻接…

解决nginx代理后,前端拿不到后端自定义的header

先说结论&#xff0c;因为前端和nginx对接&#xff0c;所以需要在nginx添加如下配置向前端暴露header add_header Access-Control-Expose-Headers Authorization 排查过程 1.后端设置了Authorization 的响应头作为token的返回&#xff0c;前后端本地联调没有问题 response.s…

单元测试——Junit (断言、常用注解)

单元测试 Junit单元测试框架 使用 断言测试 使用Assert.assertEquals(message, 预期值, 实际值); 这段代码是用于在测试中验证某个方法的返回值是否符合预期。其中&#xff0c;"方法内部有bug"是用于在断言失败时显示的提示信息。4是预期的返回值&#xff0c;index…

计算机网络-HTTP相关知识-HTTPS基础

HTTPS与HTTP的区别 在TCP和HTTP网络层之间加入了SSL/TLS安全协议。HTTPS在TCP三次握手之后&#xff0c;还需进行SSL/TLS的握手过程。HTTP默认端口号是80&#xff0c;HTTPS默认端口号是443。 HTTPS解决的风险 HTTPS主要解决了以下三种风险&#xff1a; 窃听风险&#xff1a;H…

4.2作业

1、使用模板类&#xff0c;实现顺序栈 #include <iostream>using namespace std;template<typename T> class Stack {T *data;T top;T size; public://构造函数Stack():size(7){data new T[size];top -1;cout << "Stack的无参构造" << en…