寒冬已逝,“量子春天”正来

news2025/1/11 21:53:59

图片

最近,全球对量子技术领域的私人投资有所下降,引发了一些观点认为这个领域可能正逐渐衰退。

政治家、资助者和投资者并不总是以科学为关注焦点。然而,某些科技领域偶尔会成为热点,正如20世纪50年代核能技术的兴起,那时人们曾预测核能将变得极为廉价;随后,纳米技术和石墨烯也吸引了广泛关注。近年来,人工智能和量子技术成为热门话题。

量子技术已经从仅涉及半导体、量子点、电子显微镜和激光等“第一代”技术,发展到利用量子叠加、不确定性和纠缠等原理的“第二代”技术,或称为“量子2.0”技术。这些技术可能在计算、测量、传感、计时和成像等多个领域带来革命性的改变,从而影响工程、运输、导航、金融、国防和航空航天等多个行业。事实上,到2023年为止,全球多数领先国家都已制定量子战略,政府投资总额达到了340亿美元,其中中国在资金实力方面领先。

图片

然而,根据《2024年量子发展状况》报告的数据,量子技术领域的投资似乎出现了令人担忧的转变。这份报告是由位于芬兰的IQM量子计算机公司、风险投资机构OpenOcean、欧洲科技投资者Lakestar和The Quantum Insider(TQI)联合发布的。报告指出,自2022年达到高峰以来,全球对该领域的投资已下降50%。2022年全球量子技术投资高达22亿美元,而第二年则下降至12亿美元,其中美国的投资下降最为严重,降幅达80%,亚太地区减少17%,而欧洲、中东和非洲(EMEA)的投资略有增长,上升了3%。

图片

私人公司在量子技术领域的现金投资总额从2022年的峰值急剧下降,但2023年的总额仍超过12亿美元

图片

这一投资下滑导致一些评论家认为量子技术可能正在进入一个“量子寒冬”的阶段,尽管这种说法可能有些戏剧化。但这种现象也可能反映了投资者对新兴市场的更多关注,以及对量子计算实际应用仍需多年发展的认识。

需要注意的是,尽管量子技术备受关注,但在全球风险投资总资金中的占比还不到1%,说明这仍然是一个较为小众的领域。

图片

尽管全球对量子技术的投资出现下降,但这并不一定意味着该领域的衰退。实际上,这种情况可以通过美国科技咨询公司Gartner的“炒作周期”(Gartner hype cycle)理论来解释。该理论由分析师杰基·芬恩(Jackie Fenn)于1995年提出,准确地描述了围绕某项技术的预期是如何随时间推移而发展的。在这个周期中,技术从“技术触发点”开始,吸引广泛关注并迅速进入“预期膨胀的顶峰”,此后随着现实挑战的暴露进入“幻灭的低谷”,最终通过“启蒙的斜坡”稳步恢复,达到“生产力的高原”,在这一阶段,企业对有效应用有了更清晰的认识。

图片

Gartner的炒作周期描绘了任何新技术都会经历的五个主要阶段。截至2024年,量子技术的投资可能刚刚低于顶峰,但随着我们达到“生产力高原”(plateau of productivity),进一步下降的趋势最终会逆转

因此,当前量子技术领域的投资下降可能正是炒作周期中从高峰向低谷的自然过渡,这是市场调整的正常一环,不应被视为衰退的信号。在这个阶段,市场和技术都会逐步成熟,有望吸引更加精明的投资者,他们将侧重于技术和公司的真实潜力。

同时,尽管整体投资有所减少,但欧洲、中东和非洲地区的投资仍在增加,显示出全球范围内对量子技术的持续兴趣。报告指出,全球各地的量子研究中心正取得显著进展。例如,英国的国家量子计算中心就是一个典范,它致力于让英国企业在量子计算领域走在前列,这也是英国国家战略的重要组成部分。这些发展预示着,尽管短期内投资有所波动,量子技术领域的长期前景依然充满希望

图片

量子2.0技术中最引人瞩目的无疑是量子计算,它不仅占据了众多头条新闻,还激发了广泛的兴趣和热情。这种关注并不让人意外,特别是考虑到量子计算机潜在的巨大市场需求。根据Markets and Markets在去年的报告,预计到2028年,量子计算领域的市场价值将达到令人瞩目的44亿美元

图片

图片

根据《2024年量子发展状况》报告,目前全球共有33个国家的政府在量子技术领域采取了举措(绿色),其中20多个国家制定了国家战略,并提供了大规模资金(红色)。报告估计,截止2024年年初,已经投入的公共资金高达500亿美元

市场对量子计算机的强烈需求,主要是出于对拥有高达10,000量子比特的大型机器的追求。这类设备预计将用于破解加密程度较低的存储数据。然而,颇具讽刺意味的是,这些数据可能已过时,其价值有限。尽管如此,如果功能强大的量子计算机成为现实,它们解密传统加密算法的能力可能会对互联网安全构成威胁,甚至可能破坏全球安全格局。

量子计算机虽然在量子比特数量上有所限制,但其应用潜力仍然广泛。多家公司在这个领域已经取得显著进展,其中表现突出的是ORCA Computing。该公司的首席执行官(Richard Murray)最近在接受《福布斯》采访时透露,公司已经销售了五套系统,其中四套已在全球三个不同的地区完成安装。

图片

正如《福布斯》在一篇文章中提到的,当前面临的挑战是发现量子计算机的最佳应用场景。这并非易事,因为许多潜在客户在看到能解决实际问题的系统前,难以完全理解量子计算的潜在优势。显而易见的是,量子计算机在处理那些对经典计算机来说难以或无法解决的特定问题方面具有独特优势。

然而,实际上,目前只有少数知名量子算法能够执行某些任务时优于传统的物理学算法。其中最著名的包括1984年开发的BB84协议和1994年的肖尔算法,这两种算法都通过量子纠缠在特定任务上超越了经典方法。BB84协议是一种加密协议,用于确保双方或多方间的安全私密通信,被认为比传统方法更安全。肖尔算法则能以远超传统算法的速度计算大数的因子分解。

美国国家标准与技术研究院(NIST)预测,到2029年量子计算机可能破解如128位AES加密这样的现有公钥基础设施,这种加密技术目前用于保护互联网上的敏感信息。

尽管这些算法显示了量子计算的优势,但后续的优势量子算法开发并不多见。然而,研究人员并未放弃探索新的量子算法。

许多政府和组织,包括NIST在内,已经认识到这一挑战,并开始制定新的“后量子”加密标准以抵御量子计算机的攻击。即使攻击者拥有量子计算机,这些新标准也能提供安全保障。

在这个高风险、高回报的领域,竞争正变得激烈。据Moody透露,包括英国、德国、法国和荷兰在内的一些国家已宣布打算采用NIST批准的四种后量子密码学(PQC)解决方案,国际标准化组织(ISO)也计划将这些方案列入其标准清单。与此同时,许多与NIST合作的大公司也在积极准备采用这些新标准。

图片

功能强大且具有高性价比的量子计算机在解决复杂的优化问题方面表现出色,这包括诸如调度、路由和物流等问题。这些问题的核心在于从无数可能性中寻找最佳方案,其中最知名的例子是“旅行推销员问题”,即找到一条最短的路径,让推销员至少访问每个城市一次并返回起点。专注于快递和物流的公司,如亚马逊、联邦快递和UPS,可能会对投入量子技术领域充满兴趣。

另一个值得关注的应用领域是模拟量子系统,这在传统计算机上极为困难。因此,量子计算机在量子化学领域表现得尤为理想,主要因为量子化学涉及对分子行为和化学反应的模拟。可以预见,对于那些致力于开发新药的制药公司、制造新型电池的制造商或者探索新材料的公司来说,量子计算机代表着一个巨大的潜在市场。

正如芬兰技术研究中心 (VTT) 的量子算法和软件团队负责人Ville Kotovirta所指出的,量子计算还可以应用于机器学习(ML)和人工智能(AI),这将影响几乎所有行业。量子计算机有可能通过提供更快速、更高效的优化程序,或者探索新的模型和框架,来改善机器学习算法——可能带来显著的提升。这有望成为一个巨大的新兴市场,但前提是量子技术领域能够生产出实用的大规模量子计算机,并开发出利用其独特能力的算法和应用程序

实际上,在量子硬件方面,各种方法正在被探索和开发。谷歌、IBM、Orca、Rigetti和Universal Quantum等公司都在积极研发拥有更多量子比特的量子处理器。新型量子比特,如抗噪声和错误更强的拓扑量子比特,也在研究之中。然而,目前还不清楚这些新型量子比特是否会成为主流,或者超导量子比特、离子阱量子比特、硅量子比特或光学量子比特中哪一种会占据主导地位。

图片

领先的量子技术路线及现阶段发展汇总

在开发各种硬件选择的同时,我们也需要为这些量子计算机开发相应的操作系统,并构建及测试适用的算法。事实上,在潜在客户能够完全领会量子计算机的成本效益之前,可能还需要数年甚至数十年的时间。当经典计算机足以应对当前的工作时,人们自然会质疑购买新的量子计算机的必要性。

尽管在构建量子计算机方面已经投入了大量资金,但在确保这些技术直接造福公众方面的关注却相对较少。不过,最近这种情况似乎开始转变。

最近,谷歌和XPrize基金会联合发起了一项总价值500万美元(约400万英镑)的竞赛,目的是鼓励开发量子计算机在现实世界中的实际应用,特别是那些可以促进社会福祉、加速实现联合国可持续发展目标的应用。这标志着业界开始更加重视量子计算技术对社会的积极影响,而不仅仅是其科技创新方面的潜能。

图片

当然,市场上已经出现了量子计算机的一些早期应用,但这些机器的不确定性可能会一直存在,直到某个厂商开始销售配备了10,000量子比特或更多的可扩展且经济实惠的硬件平台。届时,量子计算领域才可能真正起飞,并且我们才能准确判定其实际应用价值。

在未来20年内,普通家庭是否能拥有自己的量子计算机还是一个悬而未决的问题。尽管物理学家对量子技术抱有深深的敬畏,但关于量子计算何时能达到其“生产力的顶峰”——即在实际应用中展现出其全部潜能的时刻,目前仍无法确切预测

图片

随着量子2.0技术的进步,领域如量子时钟、量子传感器和量子成像技术的应用潜力正日渐显现,特别是当这些技术在实验室外达到了一定的实用性标准后。在这一领域,伯明翰大学主导的英国量子技术中心(UK Quantum Technology Hub)在传感器和计时方面的成就居于世界前列,相关联的企业也表现出色。

图片

量子传感公司Cerca Magnetics的可穿戴式脑磁图扫描仪

该公司还荣获了IOP量子商业与创新小组(qBIG)的首届大奖。他们已成功制造并在全球多地磁屏蔽室安装了一个便携式的3D打印头戴式扫描仪帽。该设备被宣称能以前所未有的精度测量人脑功能,最重要的是,它可以在病人移动的同时获取数据,而非要求病人静止不动地躺在大型扫描仪内。

另一家引人注目的量子传感企业是位于布里斯托的QLM公司。在爱丁堡公爵参加的IOP活动中,QLM展示了其最新研发的甲烷气体量子激光雷达相机。这款设备更小巧、更坚固、集成度更高,可用于检测甲烷泄漏,已在全球范围内进行客户试用。

图片

量子2.0技术的另一大应用领域是量子重力传感,目标是开发出可以现场部署的设备。想象一下,如果能洞悉地下的情况,将对我们的日常生活产生何等影响——筑路工人无需为修补地下管道而大规模挖掘柏油路面,而是可以进行快速、有针对性的细致修补。

伯明翰大学的衍生公司Delta.g在2023年筹集了150万英镑,用于研发地下测绘用的量子重力传感器。该公司联合创始人兼首席执行官皮特·斯特林(Pete Stirling)表示,公司旨在缩小技术规模,以便将其应用于现实生活中,例如寻找隐藏的基础设施和进行维修工作。

斯特林说:“量子重力梯度仪在各个行业中都有广泛的应用前景,我们对于能够利用这项技术来节省成本、加速测绘工作并改善人们日常生活感到非常兴奋。想象一下,如果我们能拥有一个类似‘谷歌地图’的可缩放、可探索的数据库,将地下隐藏的管道、隧道和电缆全部一网打尽,那将是多么有用的工具。”

图片

尽管风险投资资金有所减少,导致一些人担忧可能出现“量子寒冬”,但量子技术领域的发展依旧充满活力,日益成熟。因此,单纯关注资金数额可能并不是最恰当的方法。实际上,实地试验、产品或服务的收入等更传统的业绩指标,或许更能准确反映这一领域的发展现状

步入2024年,量子市场正在逐步恢复活力。例如,“法国2030”计划的总投资高达580亿美元,中国电信以19亿元对国盾量子进行战略性投资,日本设定了至2050年的宏伟“登月计划”,英国政府投入了4500万英镑以支持量子领域的发展,而2024年中国的“两会”也重点关注了量子科技等未来产业的发展。

尽管量子计算机可能还需要数年时间才能发挥出全部潜力,但在诸如传感和计时等领域,一些更短期的应用已经逐渐成熟,且具有明确的终极目标。虽然到目前为止量子计算解决的问题还相对有限,但据国际数据公司(IDC)统计,即使在目前这种情况下,场规模已经超过了10亿美元。这包括设备的开发、控制硬件的软件、云服务及应用程序开发等多个方面。

总的来说,量子计算作为物理学中最令人振奋的领域之一,其产品的商业化进程正在如火如荼地进行

参考链接(上下滑动查看更多):

[1]https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-forward/is-winter-coming-quantum-computings-trajectory-in-the-years-ahead

[2]https://www.meetiqm.com/newsroom/press-releases/state-of-quantum-report-2024

[3]https://www.gartner.com/en/research/methodologies/gartner-hype-cycle

[4]https://physicsworld.com/a/when-will-quantum-computers-finally-break-into-the-market/

[5]https://www.marketsandmarkets.com/Market-Reports/quantum-computing-market-144888301.html

[6]https://www.forbes.com/sites/trevorclawson/2024/02/09/changed-times-why-europes-quantum-startups-need-a-path-to-profit/?sh=122a480a1b29

[7]https://www.forbes.com/sites/trevorclawson/2022/11/14/into-the-unknown-for-quantum-computing-startups-the-challenge-is-finding-the-use-cases/?sh=19cdffad78ab

[8]https://www.allaboutcircuits.com/news/closer-look-at-ibms-heron-and-condor-quantum-processors/

[9]https://www.iop.org/about/awards/business-awards/2022-winners/cerca-magnetics

[10]https://qlmtec.com/news/post/?id=6488fad110d2be4862e662fd

[11]https://physicsworld.com/a/why-you-shouldnt-be-worried-about-talk-of-a-quantum-winter/

[12]https://blog.google/technology/research/google-gesda-and-xprize-launch-new-competition-in-quantum-applications/

[13]https://theconversation.com/how-long-before-quantum-computers-can-benefit-society-thats-googles-us-5-million-question-226257

[14]https://www.cio.com/article/2074464/think-you-can-ignore-quantum-computing-think-again.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1563341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ios 之 netty版本swiftNio(socket创建)

SwiftNio 简介 用于高性能协议服务器和客户端的事件驱动、无阻塞的网络应用程序框架。 SwiftNIO是一个跨平台异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端。 这就像Netty,但是为Swift写的。 Xcode引入swiftNio 在实…

联诚发2024第二季度高质量发展工作推进会议顺利召开

4月1日上午,联诚发LCF以“稳中创新•产业升级•高质量发展”为主题的第二季度企业高质量发展工作推进大会在联诚发深圳总部隆重召开。会议总结上一季度的工作成果,分析研判当前形势,谋划部署下一季度工作,团结动员公司全体职工凝心…

Web3:数字化社会的下一步

随着技术的不断进步和互联网的发展,我们正逐渐迈入一个全新的数字化社会阶段。在这个新的时代,Web3作为数字化社会的重要组成部分,将发挥着举足轻重的作用。本文将探讨Web3在数字化社会中的意义、特点以及对未来发展的影响。 1. 重新定义数字…

设计模式——行为型——责任链模式Chain Of Responsibility

请求类 public class ApproverRequest {private int type;//请求批准的类型private float price;//请求的金额private int id;//请求的编号 } 审批人抽象类 public abstract class ApproverPerson {protected ApproverPerson next;protected String name;//审批过程public a…

【好书推荐4】图机器学习

【好书推荐4】图机器学习 写在最前面编辑推荐内容简介作者简介目录前言/序言本书读者内容介绍 🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~ 🚀 欢迎一起踏上探险之旅,挖掘无限可能…

nut-ui中的menu 菜单组件的二次封装

这个菜单组件 一般可以直接用到项目里 如果复用性不强的话 直接使用 但是有一个问题 如果很多地方都需要用到这个组件 我们可以把这个组件二次封装一下 <template><div class"cinema-search-filter-component"><nut-menu><template #icon>&…

交流耦合和直流耦合

一、 AC和DC定义 在选择输入模式时&#xff0c;可能选择不同的耦合方式会影响到数据中的频率成分。大多数信号都有AC成分和DC成分&#xff0c;DC成分是0Hz的部分&#xff0c;对应时域信号中的直流分量&#xff08;或称为直流偏置&#xff09;&#xff0c;AC成分是信号中的交变部…

VCRUNTIME140_1.dll丢失是怎么回事?多种解决方法帮你搞定

在计算机使用过程中&#xff0c;我们经常会遇到一些错误提示&#xff0c;其中之一就是“vcruntime140_1.dll文件丢失”。那么&#xff0c;这个文件是什么&#xff1f;它的作用是什么&#xff1f;当它丢失时&#xff0c;会提示什么样的错误信息呢&#xff1f;本文将详细介绍vcru…

谷粒商城实战(009 缓存-分布式锁)

Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强 总时长 104:45:00 共408P 此文章包含第158p-第p165的内容 分布式锁 原理和使用 使用下shell对产生的命令进行发送 查看 -> 撰写 -> 撰写栏 idea 选中的代码提取成方法 加锁…

使用tcpdump和wireshark进行服务器抓包分析

目录 前言 1.tcpdump简介 2.Wireshark简介 3.实际案例 4.代码示例 5.总结 前言 服务器抓包分析是一种非常常见和有效的网络故障排查和性能优化手段。通过捕获服务器上的网络流量&#xff0c;可以帮助我们深入了解服务器与其它设备之间的通信情况&#xff0c;发现问题并进…

基于8086贪吃蛇游戏系统方恨设计

**单片机设计介绍&#xff0c;基于8086贪吃蛇游戏系统方恨设计 文章目录 一 概要二、功能设计三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于8086的贪吃蛇游戏系统设计是一个结合了微处理器控制、游戏逻辑以及图形显示技术的综合性项目。该系统旨在通过8086微处理器…

JAVA----线程

线程 上回说到 进程 > 运行起来的程序 > 并发编程 > 多核 CPU 操作系统管理进程: 先描述 > PCB 结构体 来把进程的各种属性都表示出来再组织 > 通过链表数据结构把多个 PCB 串起来. PCB 核心属性(进程调度) pid 进程标识符内存指针, 该进程依赖的 指令…

NIKKI DENSO伺服驱动器维修NCR-CAB1A2D-801B

NEXSRT伺服驱动器维修NPSA-MU日机电装伺服维修ACTUS POWER&#xff0c;NCS-ZE12MDA/ZE1MDA-601A&#xff0c;NEXSRT日机电装伺服维修NCS-ZE12MDB-401A/NCS-ZAMDA-401AG。 NIKKI常见故障原因及处理方法&#xff1a; 1、电机在一个方向上比另一个方向跑得快&#xff1b; (1) 故…

Keil MDK 5.37 及之后版本 安装 AC5(ARMCC) 编译器详细步骤

由于 Keil 5.37 及之后版本不再默认安装 AC5(ARMCC) 编译器&#xff0c;这就会导致由 AC5 编译的工程无法正常编译&#xff0c;往往输出窗口会提示以下信息&#xff1a;*** Target ‘STM32xxxx‘ uses ARM-Compiler ‘Default Compiler Version 5‘ which is not available. —…

Redis数据库:概念、安装及常用操作命令

目录 前言 一、数据库概述 1、关系型数据库&#xff08;RDBMS&#xff09; 1.1 产生背景 1.2 概念 1.3 特点 1.4 优缺点 1.5 常见主流关系型数据库 2、非关系型数据库&#xff08;NoSQL&#xff09; 2.1 产生背景 2.2 概念 2.3 特点 2.4 优缺点 2.5 常见主流非关…

实验三 Java类的继承与派生(计算机专业)

实验三 Java类的继承与派生&#xff08;头歌&#xff09; 制作不容易&#xff0c;点个关注&#xff01;给大家带来更多的价值&#xff01; 目录 实验三 Java类的继承与派生&#xff08;头歌&#xff09;** 制作不容易&#xff0c;点个关注&#xff01;给大家带来更多的价值&…

HBase(超级无敌详细PROMAX讲解版)

简介 概述 图-1 HBase图标 HBase原本是由Yahoo!公司开发的后来贡献给了Apache的一套开源的、基于Hadoop的、分布式的、可扩展的非关系型数据库(Non-Relational Database)&#xff0c;因此HBase不支持SQL(非关系型数据库基本上都不支持SQL)&#xff0c;而是提供了一套单独的命…

文件搜索案列 --java

目标&#xff1a; 搜索盘符下面符合要求的文件名&#xff0c;并可以选择是否打开该文件 代码&#xff1a; import java.io.File; import java.io.IOException; import java.util.Arrays; import java.util.Scanner;public class findQQ {public static void main(String[] a…

Node.js-------初识Node.js与内置模块

能够知道什么是 Node.js能够知道 Node.js 可以做什么能够说出 Node.js 中的 JavaScript 的组成部分能够使用 fs 模块读写操作文件能够使用 path 模块处理路径能够使用 http 模块写一个基本的 web 服务器 一.初识Node.js 1.浏览器中的 JavaScript 的组成部分 2.Node.js 简介 …

vscode安装通义灵码

作为vscode的插件&#xff0c;直接使用 通义灵码-灵动指间&#xff0c;快码加编&#xff0c;你的智能编码助手 通义灵码&#xff0c;是一款基于通义大模型的智能编码辅助工具&#xff0c;提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研…