AtCoder Beginner Contest 347 (ABCDEF题)视频讲解

news2024/11/24 13:48:04

A - Divisible

Problem Statement

You are given positive integers N N N and K K K, and a sequence of length N N N, A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN).
Extract all elements of A A A that are multiples of K K K, divide them by K K K, and print the quotients.

Constraints

1 ≤ N , K ≤ 100 1\leq N,K\leq 100 1N,K100
KaTeX parse error: Expected 'EOF', got '&' at position 11: 1\leq A_1 &̲lt; A_2 < \l…
A A A has at least one multiple of K K K.
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Divide all elements of A A A that are multiples of K K K and print the quotients in ascending order with spaces in between.

Sample Input 1
5 2
2 5 6 7 10
Sample Output 1
1 3 5

The multiples of 2 2 2 among the elements in A A A are 2 2 2, 6 6 6, and 10 10 10. Divide them by 2 2 2 to get 1 1 1, 3 3 3, and 5 5 5, and print them in ascending order with spaces in between.

Sample Input 2
3 1
3 4 7
Sample Output 2
3 4 7
Sample Input 3
5 10
50 51 54 60 65
Sample Output 3
5 6

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int n, k;
	cin >> n >> k;

	std::vector<int> a(n);
	for (int i = 0; i < n; i ++) {
		cin >> a[i];
		if (a[i] % k == 0)
			cout << a[i] / k << " ";
	}

	return 0;
}

B - Substring

Problem Statement

You are given a string S S S consisting of lowercase English letters. How many different non-empty substrings does S S S have?
A substring is a contiguous subsequence. For example, xxx is a substring of yxxxy but not of xxyxx.

Constraints

S S S is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1
yay
Sample Output 1
5

S S S has the following five different non-empty substrings:
a
y
ay
ya
yay

Sample Input 2
aababc
Sample Output 2
17
Sample Input 3
abracadabra
Sample Output 3
54

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	string s;

	cin >> s;

	int n = s.size();
	set<string> res;
	for (int i = 0; i < n; i ++)
		for (int j = 1; j <= n - i; j ++)
			res.insert(s.substr(i, j));

	cout << res.size() << endl;

	return 0;
}

C - Ideal Holidays

Problem Statement

In the Kingdom of AtCoder, a week consists of A + B A+B A+B days, with the first through A A A-th days being holidays and the ( A + 1 ) (A+1) (A+1)-th through ( A + B ) (A+B) (A+B)-th being weekdays.
Takahashi has N N N plans, and the i i i-th plan is scheduled D i D_i Di days later.
He has forgotten what day of the week it is today. Determine if it is possible for all of his N N N plans to be scheduled on holidays.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1\leq N\leq 2\times 10^5 1N2×105
1 ≤ A , B ≤ 1 0 9 1\leq A,B\leq 10^9 1A,B109
KaTeX parse error: Expected 'EOF', got '&' at position 10: 1\leq D_1&̲lt;D_2&lt;\ldot…

Input

The input is given from Standard Input in the following format:

N N N A A A B B B
D 1 D_1 D1 D 2 D_2 D2 … \ldots D N D_N DN

Output

Print Yes in a single line if it is possible for all of Takahashi’s N N N plans to be scheduled on holidays, and No otherwise.

Sample Input 1
3 2 5
1 2 9
Sample Output 1
Yes

In this input, a week consists of seven days, with the first through second days being holidays and the third through seventh days being weekdays.
Let us assume today is the seventh day of the week. In this case, one day later would be the first day of the week, two days later would be the second day of the week, and nine days later would also be the second day of the week, making all plans scheduled on holidays. Therefore, it is possible for all of Takahashi’s N N N plans to be scheduled on holidays.

Sample Input 2
2 5 10
10 15
Sample Output 2
No
Sample Input 3
4 347 347
347 700 705 710
Sample Output 3
Yes

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, a, b;
int d[N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> a >> b;

	int l1 = -1e18, r1 = 1e18, l2 = -1e18, r2 = 1e18;
	for (int i = 1; i <= n; i ++) {
		cin >> d[i];
		d[i] %= (a + b);
		int tl = (0 - d[i] + a + b) % (a + b), tr = (a - 1 - d[i] + a + b) % (a + b);
		if (tl > tr) {
			l1 = max(0ll, l1), r1 = min(r1, tr);
			l2 = max(l2, tl), r2 = min(a + b - 1, r2);
		} else
			l1 = max(l1, tl), r1 = min(r1, tr), l2 = max(l2, tl), r2 = min(r2, tr);
	}

	if (l1 <= r1 || l2 <= r2) cout << "Yes" << endl;
	else cout << "No" << endl;

	return 0;
}

D - Popcount and XOR

Problem Statement

You are given non-negative integers a a a, b b b, and C C C.
Determine if there is a pair of non-negative integers ( X , Y ) (X, Y) (X,Y) that satisfies all of the following five conditions. If such a pair exists, print one.
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq X &̲lt; 2^{60}
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq Y &̲lt; 2^{60}
popcount ⁡ ( X ) = a \operatorname{popcount}(X) = a popcount(X)=a
popcount ⁡ ( Y ) = b \operatorname{popcount}(Y) = b popcount(Y)=b
X ⊕ Y = C X \oplus Y = C XY=C
Here, ⊕ \oplus denotes the bitwise XOR.
If multiple pairs ( X , Y ) (X, Y) (X,Y) satisfy the conditions, you may print any of them.

What is popcount? For a non-negative integer $x$, the popcount of $x$ is the number of $1$s in the binary representation of $x$. More precisely, for a non-negative integer $x$ such that $\displaystyle x=\sum _ {i=0} ^ \infty b _ i2 ^ i\ (b _ i\in\lbrace0,1\rbrace)$, we have $\displaystyle\operatorname{popcount}(x)=\sum _ {i=0} ^ \infty b _ i$. For example, $13$ in binary is 1101, so $\operatorname{popcount}(13)=3$. What is bitwise XOR? For non-negative integers $x, y$, the bitwise exclusive OR $x \oplus y$ is defined as follows. The $2^k$'s place $\ (k\geq0)$ in the binary representation of $x \oplus y$ is $1$ if exactly one of the $2^k$'s places $\ (k\geq0)$ in the binary representations of $x$ and $y$ is $1$, and $0$ otherwise. For example, $9$ and $3$ in binary are 1001 and 0011, respectively, so $9 \oplus 3 = 10$ (in binary, 1010). #### Constraints

0 ≤ a ≤ 60 0 \leq a \leq 60 0a60
0 ≤ b ≤ 60 0 \leq b \leq 60 0b60
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq C &̲lt; 2^{60}
All input values are integers.

Input

The input is given from Standard Input in the following format:

a a a b b b C C C

Output

If there is a pair of non-negative integers that satisfies the conditions, choose one such pair ( X , Y ) (X, Y) (X,Y) and print X X X and Y Y Y in this order, with a space in between.
If no such pair exists, print -1.

Sample Input 1
3 4 7
Sample Output 1
28 27

The pair ( X , Y ) = ( 28 , 27 ) (X, Y) = (28, 27) (X,Y)=(28,27) satisfies the conditions.
Here, X X X and Y Y Y in binary are 11100 and 11011, respectively.
X X X in binary is 11100, so popcount ⁡ ( X ) = 3 \operatorname{popcount}(X) = 3 popcount(X)=3.
Y Y Y in binary is 11011, so popcount ⁡ ( Y ) = 4 \operatorname{popcount}(Y) = 4 popcount(Y)=4.
X ⊕ Y X \oplus Y XY in binary is 00111, so X ⊕ Y = 7 X \oplus Y = 7 XY=7.
If multiple pairs of non-negative integers satisfy the conditions, you may print any of them, so printing 42 45, for example, would also be accepted.

Sample Input 2
34 56 998244353
Sample Output 2
-1

No pair of non-negative integers satisfies the conditions.

Sample Input 3
39 47 530423800524412070
Sample Output 3
540431255696862041 10008854347644927

Note that the values to be printed may not fit in 32 32 32-bit integers.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int a, b, c;

	cin >> a >> b >> c;

	int r1 = 0, r2 = 0;
	for (int i = 0; i < 61; i ++)
		if (c >> i & 1) {
			if (a > b) r1 += (1ll << i), a --;
			else r2 += (1ll << i), b --;
		}
	if (a != b || a < 0 || b < 0) {
		cout << -1 << endl;
		return 0;
	}
	for (int i = 0; i < 61; i ++)
		if (!(c >> i & 1) && a && b)
			r1 += (1ll << i), r2 += (1ll << i), a --, b --;

	if (a || b) {
		cout << -1 << endl;
		return 0;
	}
	cout << r1 << " " << r2 << endl;

	return 0;
}

E - Set Add Query

Problem Statement

There is an integer sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN) of length N N N, where all elements are initially set to 0 0 0. Also, there is a set S S S, which is initially empty.
Perform the following Q Q Q queries in order. Find the value of each element in the sequence A A A after processing all Q Q Q queries. The i i i-th query is in the following format:
An integer x i x_i xi is given. If the integer x i x_i xi is contained in S S S, remove x i x_i xi from S S S. Otherwise, insert x i x_i xi to S S S. Then, for each j = 1 , 2 , … , N j=1,2,\ldots,N j=1,2,,N, add ∣ S ∣ |S| S to A j A_j Aj if j ∈ S j\in S jS.
Here, ∣ S ∣ |S| S denotes the number of elements in the set S S S. For example, if S = { 3 , 4 , 7 } S=\lbrace 3,4,7\rbrace S={3,4,7}, then ∣ S ∣ = 3 |S|=3 S=3.

Constraints

1 ≤ N , Q ≤ 2 × 1 0 5 1\leq N,Q\leq 2\times10^5 1N,Q2×105
1 ≤ x i ≤ N 1\leq x_i\leq N 1xiN
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N Q Q Q
x 1 x_1 x1 x 2 x_2 x2 … \ldots x Q x_Q xQ

Output

Print the sequence A A A after processing all queries in the following format:

A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Sample Input 1
3 4
1 3 3 2
Sample Output 1
6 2 2

In the first query, 1 1 1 is inserted to S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 1 , 0 , 0 ) A=(1,0,0) A=(1,0,0).
In the second query, 3 3 3 is inserted to S S S, making S = { 1 , 3 } S=\lbrace 1,3\rbrace S={1,3}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 3 A_3 A3. The sequence becomes A = ( 3 , 0 , 2 ) A=(3,0,2) A=(3,0,2).
In the third query, 3 3 3 is removed from S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 4 , 0 , 2 ) A=(4,0,2) A=(4,0,2).
In the fourth query, 2 2 2 is inserted to S S S, making S = { 1 , 2 } S=\lbrace 1,2\rbrace S={1,2}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 2 A_2 A2. The sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).
Eventually, the sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).

Sample Input 2
4 6
1 2 3 2 4 2
Sample Output 2
15 9 12 7

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, q;
int a[N], s[N], res[N], id[N];
int cnt[N], lst[N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> q;

	int idx = 0;
	for (int i = 1; i <= q; i ++) {
		cin >> a[i];
		if (!id[a[i]]) id[a[i]] = ++ idx;
	}

	set<int> S;
	int r = 0;
	for (int i = 1; i <= q; i ++) {
		cnt[a[i]] ++;
		if (S.count(a[i])) S.erase(a[i]);
		else S.insert(a[i]);
		s[i] = s[i - 1] + S.size();
		r = max(id[a[i]], r);
		if (S.size()) res[1] += S.size(), res[r + 1] -= S.size();
	}
	for (int i = 1; i <= n; i ++)
		res[i] += res[i - 1], lst[i] = q;
	for (int i = q; i >= 1; i --) {
		if (cnt[a[i]] % 2 == 0) {
			res[id[a[i]]] -= (s[lst[a[i]]] - s[i - 1]);
		} else {
			lst[a[i]] = i - 1;
		}
		cnt[a[i]] --;
	}

	for (int i = 1; i <= n; i ++)
		cout << res[id[i]] << " ";

	return 0;
}

F - Non-overlapping Squares

Problem Statement

There is an N × N N\times N N×N grid, and the cell at the i i i-th row from the top and the j j j-th column from the left ( 1 ≤ i , j ≤ N ) (1\leq i,j\leq N) (1i,jN) contains the integer A i , j A _ {i,j} Ai,j.
You are given an integer M M M. When choosing three non-overlapping M × M M\times M M×M grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A $6$-tuple of integers $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$ is called a good $6$-tuple when it satisfies the following three conditions: $1\leq i _ k\leq N-M+1\ (k=1,2,3)$ $1\leq j _ k\leq N-M+1\ (k=1,2,3)$ If $k\neq l\ (k,l\in\lbrace1,2,3\rbrace)$, the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect. Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good $6$-tuple $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$. It can be shown that a good $6$-tuple exists under the constraints of this problem. #### Constraints

2 ≤ N ≤ 1000 2\leq N\leq 1000 2N1000
1 ≤ M ≤ N / 2 1\leq M\leq N/2 1MN/2
0 ≤ A i , j ≤ 1 0 9 0\leq A _ {i,j}\leq10 ^ 9 0Ai,j109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 1 , 1 A _ {1,1} A1,1 A 1 , 2 A _ {1,2} A1,2 … \ldots A 1 , N A _ {1,N} A1,N
A 2 , 1 A _ {2,1} A2,1 A 2 , 2 A _ {2,2} A2,2 … \ldots A 2 , N A _ {2,N} A2,N
⋮ \vdots   ⋮ \ \vdots   ⋱ \ddots ⋮ \vdots
A N , 1 A _ {N,1} AN,1 A N , 2 A _ {N,2} AN,2 … \ldots A N , N A _ {N,N} AN,N

Output

Print the answer.

Sample Input 1
7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 1
154

From the given grid, if we choose three 3 × 3 3\times3 3×3 grids as shown in the figure below (this corresponds to setting ( i 1 , j 1 , i 2 , j 2 , i 3 , j 3 ) = ( 1 , 5 , 2 , 1 , 5 , 2 ) (i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2) (i1,j1,i2,j2,i3,j3)=(1,5,2,1,5,2)), the sum of the numbers written in the chosen grids will be 154 154 154.

There is no way to make the sum 155 155 155 or greater while satisfying the conditions in the problem statement, so print 154 154 154.

Sample Input 2
7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 2
27

The following choice is optimal.

Sample Input 3
16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40
Sample Output 3
3295

The following choice is optimal.

Solution

后期补一下这题目的视频


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 1e3 + 10;

int n, m;
int a[N][N], s[N][N], ln[N], cl[N];
int lu[N][N], ld[N][N], ru[N][N], rd[N][N];

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	cin >> n >> m;

	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++)
			cin >> a[i][j], a[i][j] += a[i][j - 1] + a[i - 1][j] - a[i - 1][j - 1];
	for (int i = 1; i <= n - m + 1; i ++)
		for (int j = 1; j <= n - m + 1; j ++) {
			s[i][j] = a[i + m - 1][j + m - 1] - a[i - 1][j + m - 1] - a[i + m - 1][j - 1] + a[i - 1][j - 1];
			ln[i] = max(ln[i], s[i][j]), cl[j] = max(cl[j], s[i][j]);
		}
	for (int i = m; i <= n; i ++)
		for (int j = m; j <= n; j ++)
			lu[i][j] = max(max(lu[i - 1][j], lu[i][j - 1]), s[i - m + 1][j - m + 1]);
	for (int i = n - m + 1; i >= 1; i --)
		for (int j = m; j <= n; j ++)
			ld[i][j] = max(max(ld[i + 1][j], ld[i][j - 1]), s[i][j - m + 1]);
	for (int i = m; i <= n; i ++)
		for (int j = n - m + 1; j >= 1; j --)
			ru[i][j] = max(max(ru[i - 1][j], ru[i][j + 1]), s[i - m + 1][j]);
	for (int i = n - m + 1; i >= 1; i --)
		for (int j = n - m + 1; j >= 1; j --)
			rd[i][j] = max(max(rd[i + 1][j], rd[i][j + 1]), s[i][j]);

	int res = 0;
	for (int i = 1; i <= n; i ++)
		for (int j = 1; j <= n; j ++) {
			res = max(res, lu[i][j] + ru[i][j + 1] + ld[i + 1][n]);
			res = max(res, lu[i][j] + ld[i + 1][j] + rd[1][j + 1]);
			res = max(res, ld[i][j] + rd[i][j + 1] + ru[i - 1][1]);
			res = max(res, ru[i][j] + rd[i + 1][j] + ld[1][j - 1]);
		}
	for (int i = m; i <= n; i ++) {
		int mx1 = 0, mx2 = 0;
		for (int j = i + m; j <= n; j ++) {
			mx1 = max(mx1, ln[j - m + 1]), mx2 = max(mx2, cl[j - m + 1]);
			res = max(res, ru[i][1] + mx1 + rd[j + 1][1]);
			res = max(res, ld[1][i] + mx2 + rd[1][j + 1]);
		}
	}

	cout << res << endl;

	return 0;
}

视频题解

Atcoder Beginner Contest 347(A ~ E 讲解)

欢迎大家关注我的B站空间:https://space.bilibili.com/630340560


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1559511.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2-HDFS常用命令及上传下载流程

HDFS NameNode 安全模式(safemode) 当NameNode被重启的时候&#xff0c;自动进入安全模式 在安全模式中&#xff0c;NameNode首先会触发edits_inprogress文件的滚动。滚动完成之后&#xff0c;更新fsimage文件 更新完成之后&#xff0c;NameNode会将fsimage文件中的元数据加…

新闻管理系统(源码+文档)

新闻管理系统&#xff08;小程序、ios、安卓都可部署&#xff09; 文件包含内容程序简要说明含有功能项目截图客户端新闻详情新闻首页分类退出登录个人中心拨打客服热线注册界面个人资料新闻评论成功 管理端用户管理分类管理新闻管理 文件包含内容 1、搭建视频 2、流程图 3、开…

特征融合篇 | 利用RT-DETR的AIFI去替换YOLOv8中的SPPF(附2种改进方法)

前言:Hello大家好,我是小哥谈。RT-DETR模型是一种用于目标检测的深度学习模型,它基于transformer架构,特别适用于实时处理序列数据。在RT-DETR模型中,AIFI(基于注意力的内部尺度特征交互)模块是一个关键组件,它通过引入注意力机制来增强模型对局部和全局信息的处理能力…

网络编程的学习1

网络编程 在网络通信协议下&#xff0c;不同计算机上运行的程序&#xff0c;进行数据传输。 三要素 ip&#xff1a;设备在网络中的地址&#xff0c;是唯一的标识。 ipv4:采取32位地址长度&#xff0c;分成4组。 ipv6&#xff1a;采用128位地址长度&#xff0c;分成8组。 …

阿里云优惠券领取方法大公开,省钱不再是难事

阿里云作为国内领先的云计算服务提供商&#xff0c;为广大用户提供了丰富的云产品和解决方案。为了吸引用户上云&#xff0c;阿里云经常推出各种优惠活动&#xff0c;其中最受用户欢迎的就是阿里云优惠券。那么&#xff0c;阿里云优惠券究竟是什么呢&#xff1f;我们又该如何领…

pygame通过重心坐标 用纹理填充三角形

texture_x int(alpha * texture_image.get_width()) texture_y int(beta * texture_image.get_height())为什么没有gama 2024/3/30 15:45:52 在使用重心坐标进行纹理映射时&#xff0c;通常是通过计算 alpha 和 beta 来确定纹理图片上的对应位置&#xff0c;而 gamma 通常是…

【QT学习】2.补充:connect中的lambda表达式

一.简单实例&#xff1a; 1.实例要求 点击按钮&#xff0c;实现 >o<与#-#的转换。 2.步骤 补充&#xff1a;​​​​​​​ 1.如果我想在lambda中修改数据&#xff0c;怎么办&#xff1f; 写上mutable就行。

共享办公室是否可以用来搭建直播间

共享办公室确实可以用来搭建直播间&#xff0c;这在很多创业公司和个人创作者中已经变得相当普遍。以下是一些实际可行的因素&#xff1a; 空间的私密性&#xff1a;选择一个较为封闭的空间&#xff0c;可以减少外界干扰&#xff0c;保证直播过程中的安静和专注。 良好的网络连…

鸿蒙TypeScript入门学习第4天:【TS变量声明】

1、TypeScript 变量声明 变量是一种使用方便的占位符&#xff0c;用于引用计算机内存地址。 我们可以把变量看做存储数据的容器。 TypeScript 变量的命名规则&#xff1a; 变量名称可以包含数字和字母。除了下划线 _ 和美元 $ 符号外&#xff0c;不能包含其他特殊字符&…

前端三剑客 —— CSS (第二节)

目录 内容回顾&#xff1a; CSS选择器*** 属性选择器 伪类选择器 1&#xff09;:link 超链接点击之前 2&#xff09;:visited 超链接点击之后 3&#xff09;:hover 鼠标悬停在某个标签上时 4&#xff09;:active 鼠标点击某个标签时&#xff0c;但没有松开 5&#xff09;:fo…

什么是服务雪崩?什么是服务限流?

服务雪崩效应&#xff1a;因服务提供者的不可用而导致服务调用者的不可用&#xff0c;并且这种情况不断的衍生方法&#xff0c;从而导致整个系统崩溃的过程&#xff0c;就是服务雪崩效应。 解决方式&#xff1a; 熔断机制&#xff1a;当一个服务挂了&#xff0c;被影响的服务要…

基于微信小程序的自习室预约系统的设计与实现

基于微信小程序的自习室预约系统的设计与实现 文章目录 基于微信小程序的自习室预约系统的设计与实现1、前言介绍2、功能设计3、功能实现4、开发技术简介5、系统物理架构6、系统流程图7、库表设计8、关键代码9、源码获取10、 &#x1f389;写在最后 1、前言介绍 伴随着信息技术…

Oracle 低代码平台 Apex 最新版本 23.2 安装过程

趁春节快结束前&#xff0c;安装了一把APEX &#xff0c;到目前为此&#xff0c;APEX最新版本为23.2&#xff0c;23.2和21版本有一些变化&#xff0c;只是用于验证&#xff0c;我 是使用的单独模式&#xff0c;没有安装TOMAT&#xff0c;下面列一下安装过程&#xff1a; 1.环境…

Nest安装及使用~

前提条件 请确保您的操作系统上安装了 Node.js&#xff08;版本 > 16&#xff09; &#x1f4da;要查看指南&#xff0c;请访问 https://docs.nestjs.com/ &#x1f4da;要查看中文 指南&#xff0c; 请访问 https://docs.nestjs.cn/ $ node -v v16.18.1 $ npm -v 7.x.x安…

Beans模块之工厂模块DisposableBean

博主介绍&#xff1a;✌全网粉丝5W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

linux下minio部署和nginx配置

1 下载minio wget https://dl.min.io/server/minio/release/linux-amd64/minio chmod x minio #启动minio&#xff0c;文件数据存放在/data目录 ./minio server /data2 部署minio 下载minio后赋予可执行权限就可以运行了&#xff0c;这里我整理了遇到的坑和解决问题的最终配置…

ngrok 内网穿透使用

title: ngrok 内网穿透使用 search: 2024-02-29 文章目录 背景Windows安装ngrok指令授权ngrok个人用户Authtoken穿透 http 或 https 服务ngrok的代理http指令ngrok获得静态域名指令ngrok的代理ssh指令 背景 这次寒假回家&#xff0c;很无奈&#xff0c;很多东西放在项目组服务…

vuex插件实现数据共享

vuex插件 vuex是管理多个vue通用的数据的插件.(状态管理工具,状态是数据) 我们对于多个vue文件之间的共同数据,是用props传递,或者对于一个vue实例对象,进行绑定,传参,也是多次传参,多个文件之间,比较麻烦. 但是我们vuex会创建一个公共对象,从这个公共对象上赋值,比较简单易…

HarmonyOS 应用开发之使用隐式Want打开网址

以打开浏览器为例&#xff0c;假设设备上安装了一个或多个浏览器应用。为了使浏览器应用能够正常工作&#xff0c;需要在 module.json5配置文件 进行配置&#xff0c;具体配置如下&#xff1a; {"module": {..."abilities": [{..."skills": [{&…

Spring面试题(二)

一、老杜讲解Spring6整理 1. Spring有哪几大模块&#xff1f; 2. IoC控制反转的实现是依赖注入&#xff0c;set依赖注入的原理是什么&#xff1f; 3. 自动装配有哪几种&#xff1f;它的原理是基于构造注入还是基于set注入&#xff1f; 4. Spring容器中的Bean是单例还是多例…